Abstract:The spatial Sigma-Delta ($\Sigma\Delta$) architecture can be leveraged to reduce the quantization noise and enhance the effective resolution of few-bit analog-to-digital converters (ADCs) at certain spatial frequencies of interest. Utilizing the variational Bayesian (VB) inference framework, this paper develops novel data detection algorithms tailored for massive multiple-input multiple-output (MIMO) systems with few-bit $\Sigma\Delta$ ADCs and angular channel models, where uplink signals are confined to a specific angular sector. We start by modeling the corresponding Bayesian networks for the $1^{\mathrm{st}}$- and $2^{\mathrm{nd}}$-order $\Sigma\Delta$ receivers. Next, we propose an iterative algorithm, referred to as Sigma-Delta variational Bayes (SD-VB), for MIMO detection, offering low-complexity updates through closed-form expressions of the variational densities of the latent variables. Simulation results show that the proposed $2^{\mathrm{nd}}$-order SD-VB algorithm delivers the best symbol error rate (SER) performance while maintaining the same computational complexity as in unquantized systems, matched-filtering VB with conventional quantization, and linear minimum mean-squared error (LMMSE) methods. Moreover, the $1^{\mathrm{st}}$- and $2^{\mathrm{nd}}$-order SD-VB algorithms achieve their lowest SER at an antenna separation of one-fourth wavelength for a fixed number of antenna elements. The effects of the steering angle of the $\Sigma\Delta$ architecture, the number of ADC resolution bits, and the number of antennas and users are also extensively analyzed.
Abstract:We present new insightful results on the uplink data detection for massive multiple-input multiple-output systems with 1-bit analog-to-digital converters. The expected values of the soft-estimated symbols (i.e., after the linear combining and prior to the data detection) have been recently characterized for multiple user equipments (UEs) and maximum ratio combining (MRC) receiver at the base station. In this paper, we first provide a numerical evaluation of the expected value of the soft-estimated symbols with zero-forcing (ZF) and minimum mean squared error (MMSE) receivers for a multi-UE setting with correlated Rayleigh fading. Then, we propose a joint data detection (JD) strategy, which exploits the interdependence among the soft-estimated symbols of the interfering UEs, along with its low-complexity variant. These strategies are compared with a naive approach that adapts the maximum-likelihood data detection to the 1-bit quantization. Numerical results show that ZF and MMSE provide considerable gains over MRC in terms of symbol error rate. Moreover, the proposed JD and its low-complexity variant provide a significant boost in comparison with the single-UE data detection.
Abstract:We consider unmanned aerial vehicle (UAV)-enabled wireless systems where downlink communications between a multi-antenna UAV and multiple users are assisted by a hybrid active-passive reconfigurable intelligent surface (RIS). We aim at a fairness design of two typical UAV-enabled networks, namely the static-UAV network where the UAV is deployed at a fixed location to serve all users at the same time, and the mobile-UAV network which employs the time division multiple access protocol. In both networks, our goal is to maximize the minimum rate among users through jointly optimizing the UAV's location/trajectory, transmit beamformer, and RIS coefficients. The resulting problems are highly nonconvex due to a strong coupling between the involved variables. We develop efficient algorithms based on block coordinate ascend and successive convex approximation to effectively solve these problems in an iterative manner. In particular, in the optimization of the mobile-UAV network, closed-form solutions to the transmit beamformer and RIS passive coefficients are derived. Numerical results show that a hybrid RIS equipped with only 4 active elements and a power budget of 0 dBm offers an improvement of 38%-63% in minimum rate, while that achieved by a passive RIS is only about 15%, with the same total number of elements.
Abstract:A location-aware coded caching scheme is introduced for applications with location-dependent data requests. An example of such an application is a wireless immersive experience, where users are immersed in a three-dimensional virtual world and their viewpoint varies as they move within the application area. As the wireless connectivity condition of the users also varies with their location due to small- and large-scale fading, a non-uniform memory allocation process is used to avoid excessive delivery time in the bottleneck areas. Then, a well-defined location-aware placement and delivery array (LAPDA) is used for data delivery to utilize unicast transmission with a fast converging, iterative linear beamforming process. An underlying weighted max-min transmit precoder design enables the proposed scheme to serve users in poor connectivity areas with smaller amounts of data while simultaneously delivering larger amounts to other users. Unlike previous studies in the literature, our new scheme is not constrained by the number of users or network parameters (users' cache capacity, number of antennas at the transmitter, etc.) and is suitable for large networks due to its linear transceiver structure. Despite non-uniform cache placement, the proposed scheme achieves a coded caching gain that is additive to the multiplexing gain and outperforms conventional symmetric CC schemes with only a moderate degree of freedom (DoF) loss.
Abstract:We consider a multi-user multiple-input single-output (MISO) communications system which is assisted by a hybrid active-passive reconfigurable intelligent surface (RIS). Unlike conventional passive RISs, hybrid RIS is equipped with a few active elements with the ability to reflect and amplify incident signals to significantly improve the system performance. Towards a fairness-oriented design, we maximize the minimum rate among all users through jointly optimizing the transmit beamforming vectors and RIS reflecting/amplifying coefficients. Combining tools from block coordinate ascent and successive convex approximation, the challenging nonconvex problem is efficiently solved by a low-complexity iterative algorithm. The numerical results show that a hybrid RIS with 4 active elements out of a total of 50 elements with a power budget of -1 dBm offers an improvement of up to 80% to the considered system, while that achieved by a fully passive RIS is only 27%.