Abstract:Recent advancements in diffusion models have significantly broadened the possibilities for editing images of real-world objects. However, performing non-rigid transformations, such as changing the pose of objects or image-based conditioning, remains challenging. Maintaining object identity during these edits is difficult, and current methods often fall short of the precision needed for industrial applications, where consistency is critical. Additionally, fine-tuning diffusion models requires custom training data, which is not always accessible in real-world scenarios. This work introduces FashionRepose, a training-free pipeline for non-rigid pose editing specifically designed for the fashion industry. The approach integrates off-the-shelf models to adjust poses of long-sleeve garments, maintaining identity and branding attributes. FashionRepose uses a zero-shot approach to perform these edits in near real-time, eliminating the need for specialized training. consistent image editing. The solution holds potential for applications in the fashion industry and other fields demanding identity preservation in image editing.
Abstract:This demo paper presents \airtown, a privacy-preserving mobile application that provides real-time, pollution-aware recommendations for points of interest (POIs) in urban environments. By combining real-time Air Quality Index (AQI) data with user preferences, the proposed system aims to help users make health-conscious decisions about the locations they visit. The application utilizes collaborative filtering for personalized suggestions, and federated learning for privacy protection, and integrates AQI data from sensor networks in cities such as Bari, Italy, and Cork, UK. In areas with sparse sensor coverage, interpolation techniques approximate AQI values, ensuring broad applicability. This system offers a poromsing, health-oriented POI recommendation solution that adapts dynamically to current urban air quality conditions while safeguarding user privacy.
Abstract:Multistakeholder recommender systems are those that account for the impacts and preferences of multiple groups of individuals, not just the end users receiving recommendations. Due to their complexity, evaluating these systems cannot be restricted to the overall utility of a single stakeholder, as is often the case of more mainstream recommender system applications. In this article, we focus our discussion on the intricacies of the evaluation of multistakeholder recommender systems. We bring attention to the different aspects involved in the evaluation of multistakeholder recommender systems - from the range of stakeholders involved (including but not limited to producers and consumers) to the values and specific goals of each relevant stakeholder. Additionally, we discuss how to move from theoretical principles to practical implementation, providing specific use case examples. Finally, we outline open research directions for the RecSys community to explore. We aim to provide guidance to researchers and practitioners about how to think about these complex and domain-dependent issues of evaluation in the course of designing, developing, and researching applications with multistakeholder aspects.
Abstract:Thanks to the great interest posed by researchers and companies, recommendation systems became a cornerstone of machine learning applications. However, concerns have arisen recently about the need for reproducibility, making it challenging to identify suitable pipelines. Several frameworks have been proposed to improve reproducibility, covering the entire process from data reading to performance evaluation. Despite this effort, these solutions often overlook the role of data management, do not promote interoperability, and neglect data analysis despite its well-known impact on recommender performance. To address these gaps, we propose DataRec, which facilitates using and manipulating recommendation datasets. DataRec supports reading and writing in various formats, offers filtering and splitting techniques, and enables data distribution analysis using well-known metrics. It encourages a unified approach to data manipulation by allowing data export in formats compatible with several recommendation frameworks.
Abstract:In recent years, 3D models have gained popularity in various fields, including entertainment, manufacturing, and simulation. However, manually creating these models can be a time-consuming and resource-intensive process, making it impractical for large-scale industrial applications. To address this issue, researchers are exploiting Artificial Intelligence and Machine Learning algorithms to automatically generate 3D models effortlessly. In this paper, we present a novel cloud-native pipeline that can automatically reconstruct 3D models from monocular 2D images captured using a smartphone camera. Our goal is to provide an efficient and easily-adoptable solution that meets the Industry 4.0 standards for creating a Digital Twin model, which could enhance personnel expertise through accelerated training. We leverage machine learning models developed by NVIDIA Research Labs alongside a custom-designed pose recorder with a unique pose compensation component based on the ARCore framework by Google. Our solution produces a reusable 3D model, with embedded materials and textures, exportable and customizable in any external 3D modelling software or 3D engine. Furthermore, the whole workflow is implemented by adopting the microservices architecture standard, enabling each component of the pipeline to operate as a standalone replaceable module.
Abstract:In specific domains like fashion, music, and movie recommendation, the multi-faceted features characterizing products and services may influence each customer on online selling platforms differently, paving the way to novel multimodal recommendation models that can learn from such multimodal content. According to the literature, the common multimodal recommendation pipeline involves (i) extracting multimodal features, (ii) refining their high-level representations to suit the recommendation task, (iii) optionally fusing all multimodal features, and (iv) predicting the user-item score. While great effort has been put into designing optimal solutions for (ii-iv), to the best of our knowledge, very little attention has been devoted to exploring procedures for (i). In this respect, the existing literature outlines the large availability of multimodal datasets and the ever-growing number of large models accounting for multimodal-aware tasks, but (at the same time) an unjustified adoption of limited standardized solutions. This motivates us to explore more extensive techniques for the (i) stage of the pipeline. To this end, this paper settles as the first attempt to offer a large-scale benchmarking for multimodal recommender systems, with a specific focus on multimodal extractors. Specifically, we take advantage of two popular and recent frameworks for multimodal feature extraction and reproducibility in recommendation, Ducho and Elliot, to offer a unified and ready-to-use experimental environment able to run extensive benchmarking analyses leveraging novel multimodal feature extractors. Results, largely validated under different hyper-parameter settings for the chosen extractors, provide important insights on how to train and tune the next generation of multimodal recommendation algorithms.
Abstract:Item recommendation (the task of predicting if a user may interact with new items from the catalogue in a recommendation system) and link prediction (the task of identifying missing links in a knowledge graph) have long been regarded as distinct problems. In this work, we show that the item recommendation problem can be seen as an instance of the link prediction problem, where entities in the graph represent users and items, and the task consists of predicting missing instances of the relation type <<interactsWith>>. In a preliminary attempt to demonstrate the assumption, we decide to test three popular factorisation-based link prediction models on the item recommendation task, showing that their predictive accuracy is competitive with ten state-of-the-art recommendation models. The purpose is to show how the former may be seamlessly and effectively applied to the recommendation task without any specific modification to their architectures. Finally, while beginning to unveil the key reasons behind the recommendation performance of the selected link prediction models, we explore different settings for their hyper-parameter values, paving the way for future directions.
Abstract:In the realm of music recommendation, sequential recommender systems have shown promise in capturing the dynamic nature of music consumption. Nevertheless, traditional Transformer-based models, such as SASRec and BERT4Rec, while effective, encounter challenges due to the unique characteristics of music listening habits. In fact, existing models struggle to create a coherent listening experience due to rapidly evolving preferences. Moreover, music consumption is characterized by a prevalence of repeated listening, i.e., users frequently return to their favourite tracks, an important signal that could be framed as individual or personalized popularity. This paper addresses these challenges by introducing a novel approach that incorporates personalized popularity information into sequential recommendation. By combining user-item popularity scores with model-generated scores, our method effectively balances the exploration of new music with the satisfaction of user preferences. Experimental results demonstrate that a Personalized Most Popular recommender, a method solely based on user-specific popularity, outperforms existing state-of-the-art models. Furthermore, augmenting Transformer-based models with personalized popularity awareness yields superior performance, showing improvements ranging from 25.2% to 69.8%. The code for this paper is available at https://github.com/sisinflab/personalized-popularity-awareness.
Abstract:Recently, graph neural networks (GNNs)-based recommender systems have encountered great success in recommendation. As the number of GNNs approaches rises, some works have started questioning the theoretical and empirical reasons behind their superior performance. Nevertheless, this investigation still disregards that GNNs treat the recommendation data as a topological graph structure. Building on this assumption, in this work, we provide a novel evaluation perspective on GNNs-based recommendation, which investigates the impact of the graph topology on the recommendation performance. To this end, we select some (topological) properties of the recommendation data and three GNNs-based recommender systems (i.e., LightGCN, DGCF, and SVD-GCN). Then, starting from three popular recommendation datasets (i.e., Yelp2018, Gowalla, and Amazon-Book) we sample them to obtain 1,800 size-reduced datasets that still resemble the original ones but can encompass a wider range of topological structures. We use this procedure to build a large pool of samples for which data characteristics and recommendation performance of the selected GNNs models are measured. Through an explanatory framework, we find strong correspondences between graph topology and GNNs performance, offering a novel evaluation perspective on these models.
Abstract:Generally, items with missing modalities are dropped in multimodal recommendation. However, with this work, we question this procedure, highlighting that it would further damage the pipeline of any multimodal recommender system. First, we show that the lack of (some) modalities is, in fact, a widely-diffused phenomenon in multimodal recommendation. Second, we propose a pipeline that imputes missing multimodal features in recommendation by leveraging traditional imputation strategies in machine learning. Then, given the graph structure of the recommendation data, we also propose three more effective imputation solutions that leverage the item-item co-purchase graph and the multimodal similarities of co-interacted items. Our method can be plugged into any multimodal RSs in the literature working as an untrained pre-processing phase, showing (through extensive experiments) that any data pre-filtering is not only unnecessary but also harmful to the performance.