Abstract:In specific domains like fashion, music, and movie recommendation, the multi-faceted features characterizing products and services may influence each customer on online selling platforms differently, paving the way to novel multimodal recommendation models that can learn from such multimodal content. According to the literature, the common multimodal recommendation pipeline involves (i) extracting multimodal features, (ii) refining their high-level representations to suit the recommendation task, (iii) optionally fusing all multimodal features, and (iv) predicting the user-item score. While great effort has been put into designing optimal solutions for (ii-iv), to the best of our knowledge, very little attention has been devoted to exploring procedures for (i). In this respect, the existing literature outlines the large availability of multimodal datasets and the ever-growing number of large models accounting for multimodal-aware tasks, but (at the same time) an unjustified adoption of limited standardized solutions. This motivates us to explore more extensive techniques for the (i) stage of the pipeline. To this end, this paper settles as the first attempt to offer a large-scale benchmarking for multimodal recommender systems, with a specific focus on multimodal extractors. Specifically, we take advantage of two popular and recent frameworks for multimodal feature extraction and reproducibility in recommendation, Ducho and Elliot, to offer a unified and ready-to-use experimental environment able to run extensive benchmarking analyses leveraging novel multimodal feature extractors. Results, largely validated under different hyper-parameter settings for the chosen extractors, provide important insights on how to train and tune the next generation of multimodal recommendation algorithms.
Abstract:The increasing demand for online fashion retail has boosted research in fashion compatibility modeling and item retrieval, focusing on matching user queries (textual descriptions or reference images) with compatible fashion items. A key challenge is top-bottom retrieval, where precise compatibility modeling is essential. Traditional methods, often based on Bayesian Personalized Ranking (BPR), have shown limited performance. Recent efforts have explored using generative models in compatibility modeling and item retrieval, where generated images serve as additional inputs. However, these approaches often overlook the quality of generated images, which could be crucial for model performance. Additionally, generative models typically require large datasets, posing challenges when such data is scarce. To address these issues, we introduce the Generative Compatibility Model (GeCo), a two-stage approach that improves fashion image retrieval through paired image-to-image translation. First, the Complementary Item Generation Model (CIGM), built on Conditional Generative Adversarial Networks (GANs), generates target item images (e.g., bottoms) from seed items (e.g., tops), offering conditioning signals for retrieval. These generated samples are then integrated into GeCo, enhancing compatibility modeling and retrieval accuracy. Evaluations on three datasets show that GeCo outperforms state-of-the-art baselines. Key contributions include: (i) the GeCo model utilizing paired image-to-image translation within the Composed Image Retrieval framework, (ii) comprehensive evaluations on benchmark datasets, and (iii) the release of a new Fashion Taobao dataset designed for top-bottom retrieval, promoting further research.
Abstract:In this work, we introduce Ducho 2.0, the latest stable version of our framework. Differently from Ducho, Ducho 2.0 offers a more personalized user experience with the definition and import of custom extraction models fine-tuned on specific tasks and datasets. Moreover, the new version is capable of extracting and processing features through multimodal-by-design large models. Notably, all these new features are supported by optimized data loading and storing to the local memory. To showcase the capabilities of Ducho 2.0, we demonstrate a complete multimodal recommendation pipeline, from the extraction/processing to the final recommendation. The idea is to provide practitioners and experienced scholars with a ready-to-use tool that, put on top of any multimodal recommendation framework, may permit them to run extensive benchmarking analyses. All materials are accessible at: \url{https://github.com/sisinflab/Ducho}.