Abstract:Large language models trained via next-token prediction are fundamentally pattern-matchers: sensitive to superficial phrasing variations even when the underlying problem is identical. Group Relative Policy Optimization (GRPO) was designed to improve reasoning, but in fact it worsens this situation through two failure modes: diversity collapse, where training amplifies a single solution strategy while ignoring alternatives of gradient signal, and gradient diminishing, where a large portion of questions yield zero gradients because all rollouts receive identical rewards. We propose TA-GRPO (Transform-Augmented GRPO), which generates semantically equivalent transformed variants of each question (via paraphrasing, variable renaming, and format changes) and computes advantages by pooling rewards across the entire group. This pooled computation ensures mixed rewards even when the original question is too easy or too hard, while training on diverse phrasings promotes multiple solution strategies. We provide theoretical justification showing that TA-GRPO reduces zero-gradient probability and improves generalization via reduced train-test distribution shift. Experiments on mathematical reasoning benchmarks show consistent Pass@k improvements, with gains up to 9.84 points on competition math (AMC12, AIME24) and 5.05 points on out-of-distribution scientific reasoning (GPQA-Diamond).
Abstract:Open-ended question answering (QA) evaluates a model's ability to perform contextualized reasoning beyond factual recall. This challenge is especially acute in practice-based domains, where knowledge is procedural and grounded in professional judgment, while most existing LLM benchmarks depend on pre-existing human exam datasets that are often unavailable in such settings. We introduce a framework for automated benchmark generation from expert-authored guidelines informed by Bloom's Taxonomy. It converts expert practices into implicit violation-based scenarios and expands them into auto-graded multiple-choice questions (MCQs) and multi-turn dialogues across four cognitive levels, enabling deterministic, reproducible, and scalable evaluation. Applied to three applied domains: teaching, dietetics, and caregiving, we find differences between model and human-like reasoning: LLMs sometimes perform relatively better on higher-order reasoning (Analyze) but fail more frequently on lower-level items (Remember). We produce large-scale, psychometrically informed benchmarks that surface these non-intuitive model behaviors and enable evaluation of contextualized reasoning in real-world settings.
Abstract:Instruction-based text editing is increasingly critical for real-world applications such as code editors (e.g., Cursor), but Large Language Models (LLMs) continue to struggle with this task. Unlike free-form generation, editing requires faithfully implementing user instructions while preserving unchanged content, as even minor unintended modifications can break functionality. Existing approaches treat editing as generic text generation, leading to two key failures: they struggle to faithfully align edits with diverse user intents, and they often over-edit unchanged regions. We propose HyperEdit to address both issues. First, we introduce hypernetwork-based dynamic adaptation that generates request-specific parameters, enabling the model to tailor its editing strategy to each instruction. Second, we develop difference-aware regularization that focuses supervision on modified spans, preventing over-editing while ensuring precise, minimal changes. HyperEdit achieves a 9%--30% relative improvement in BLEU on modified regions over state-of-the-art baselines, despite utilizing only 3B parameters.
Abstract:Although LLMs have achieved significant success, their reliance on large volumes of human-annotated data has limited their potential for further scaling. In this situation, utilizing self-generated synthetic data has become crucial for fine-tuning LLMs without extensive human annotation. However, current methods often fail to ensure consistent improvements across iterations, with performance stagnating after only minimal updates. To overcome these challenges, we introduce Dynamic Noise Preference Optimization (DNPO). DNPO employs a dynamic sample labeling mechanism to construct preference pairs for training and introduces controlled, trainable noise into the preference optimization process. Our approach effectively prevents stagnation and enables continuous improvement. In experiments with Zephyr-7B, DNPO consistently outperforms existing methods, showing an average performance boost of 2.6% across multiple benchmarks. Additionally, DNPO shows a significant improvement in model-generated data quality, with a 29.4% win-loss rate gap compared to the baseline in GPT-4 evaluations. This highlights its effectiveness in enhancing model performance through iterative refinement.
Abstract:Large Language Models (LLMs) have demonstrated remarkable abilities in tackling a wide range of complex tasks. However, their huge computational and memory costs raise significant challenges in deploying these models on resource-constrained devices or efficiently serving them. Prior approaches have attempted to alleviate these problems by permanently removing less important model structures, yet these methods often result in substantial performance degradation due to the permanent deletion of model parameters. In this work, we tried to mitigate this issue by reducing the number of active parameters without permanently removing them. Specifically, we introduce a differentiable dynamic pruning method that pushes dense models to maintain a fixed number of active parameters by converting their MLP layers into a Mixture of Experts (MoE) architecture. Our method, even without fine-tuning, consistently outperforms previous structural pruning techniques across diverse model families, including Phi-2, LLaMA-2, LLaMA-3, and Qwen-2.5.
Abstract:Large Language Models (LLMs) have achieved remarkable success in various natural language processing tasks, including language modeling, understanding, and generation. However, the increased memory and computational costs associated with these models pose significant challenges for deployment on resource-limited devices. Structural pruning has emerged as a promising solution to reduce the costs of LLMs without requiring post-processing steps. Prior structural pruning methods either follow the dependence of structures at the cost of limiting flexibility, or introduce non-trivial additional parameters by incorporating different projection matrices. In this work, we propose a novel approach that relaxes the constraint imposed by regular structural pruning methods and eliminates the structural dependence along the embedding dimension. Our dimension-independent structural pruning method offers several benefits. Firstly, our method enables different blocks to utilize different subsets of the feature maps. Secondly, by removing structural dependence, we facilitate each block to possess varying widths along its input and output dimensions, thereby significantly enhancing the flexibility of structural pruning. We evaluate our method on various LLMs, including OPT, LLaMA, LLaMA-2, Phi-1.5, and Phi-2. Experimental results demonstrate that our approach outperforms other state-of-the-art methods, showing for the first time that structural pruning can achieve an accuracy similar to semi-structural pruning.




Abstract:Open World Compositional Zero-Shot Learning (OW-CZSL) is known to be an extremely challenging task, which aims to recognize unseen compositions formed from seen attributes and objects without any prior assumption of the output space. In order to achieve this goal, a model has to be "smart" and "knowledgeable". To be smart, a model should be good at reasoning the interactions between attributes and objects from the seen compositions. While "knowledgeable" means the model owns "common sense" to the open world that can "foresee" some features of the unseen compositions. Most previous work focuses on the "smart" part, while few of them provided an effective solution to achieve the "knowledgeable" goal. In this paper, we proposed a framework named Multi-Modal Prompt Tuning (MMPT) to inherit the "knowledgeable" property from the large pre-trained vision-language model. Extensive experiments show that our proposed MMPT obtains new state-of-the-art results in OW-CZSL task. On the UT-Zappos dataset, MMPT pushes the AUC score to $29.8$, while the previous best score is $26.5$. On the more challenging MIT-States dataset, the AUC score of MMPT is 1.5 times better than the current state-of-the-art.




Abstract:Prompt learning has been proven to be highly effective in improving pre-trained language model (PLM) adaptability, surpassing conventional fine-tuning paradigms, and showing exceptional promise in an ever-growing landscape of applications and APIs tailored for few-shot learning scenarios. Despite the growing prominence of prompt learning-based APIs, their security concerns remain underexplored. In this paper, we undertake a pioneering study on the Trojan susceptibility of prompt-learning PLM APIs. We identified several key challenges, including discrete-prompt, few-shot, and black-box settings, which limit the applicability of existing backdoor attacks. To address these challenges, we propose TrojPrompt, an automatic and black-box framework to effectively generate universal and stealthy triggers and insert Trojans into hard prompts. Specifically, we propose a universal API-driven trigger discovery algorithm for generating universal triggers for various inputs by querying victim PLM APIs using few-shot data samples. Furthermore, we introduce a novel progressive trojan poisoning algorithm designed to generate poisoned prompts that retain efficacy and transferability across a diverse range of models. Our experiments and results demonstrate TrojPrompt's capacity to effectively insert Trojans into text prompts in real-world black-box PLM APIs, while maintaining exceptional performance on clean test sets and significantly outperforming baseline models. Our work sheds light on the potential security risks in current models and offers a potential defensive approach.
Abstract:Recent works demonstrate a remarkable ability to customize text-to-image diffusion models while only providing a few example images. What happens if you try to customize such models using multiple, fine-grained concepts in a sequential (i.e., continual) manner? In our work, we show that recent state-of-the-art customization of text-to-image models suffer from catastrophic forgetting when new concepts arrive sequentially. Specifically, when adding a new concept, the ability to generate high quality images of past, similar concepts degrade. To circumvent this forgetting, we propose a new method, C-LoRA, composed of a continually self-regularized low-rank adaptation in cross attention layers of the popular Stable Diffusion model. Furthermore, we use customization prompts which do not include the word of the customized object (i.e., "person" for a human face dataset) and are initialized as completely random embeddings. Importantly, our method induces only marginal additional parameter costs and requires no storage of user data for replay. We show that C-LoRA not only outperforms several baselines for our proposed setting of text-to-image continual customization, which we refer to as Continual Diffusion, but that we achieve a new state-of-the-art in the well-established rehearsal-free continual learning setting for image classification. The high achieving performance of C-LoRA in two separate domains positions it as a compelling solution for a wide range of applications, and we believe it has significant potential for practical impact.




Abstract:Singular value decomposition (SVD) is one of the most popular compression methods that approximate a target matrix with smaller matrices. However, standard SVD treats the parameters within the matrix with equal importance, which is a simple but unrealistic assumption. The parameters of a trained neural network model may affect task performance unevenly, which suggests non-equal importance among the parameters. Compared to SVD, the decomposition method aware of parameter importance is the more practical choice in real cases. Unlike standard SVD, weighted value decomposition is a non-convex optimization problem that lacks a closed-form solution. We systematically investigated multiple optimization strategies to tackle the problem and examined our method by compressing Transformer-based language models. Further, we designed a metric to predict when the SVD may introduce a significant performance drop, for which our method can be a rescue strategy. The extensive evaluations demonstrate that our method can perform better than current SOTA methods in compressing Transformer-based language models.