Abstract:Extensive studies have shown that deep learning models are vulnerable to adversarial and natural noises, yet little is known about model robustness on noises caused by different system implementations. In this paper, we for the first time introduce SysNoise, a frequently occurred but often overlooked noise in the deep learning training-deployment cycle. In particular, SysNoise happens when the source training system switches to a disparate target system in deployments, where various tiny system mismatch adds up to a non-negligible difference. We first identify and classify SysNoise into three categories based on the inference stage; we then build a holistic benchmark to quantitatively measure the impact of SysNoise on 20+ models, comprehending image classification, object detection, instance segmentation and natural language processing tasks. Our extensive experiments revealed that SysNoise could bring certain impacts on model robustness across different tasks and common mitigations like data augmentation and adversarial training show limited effects on it. Together, our findings open a new research topic and we hope this work will raise research attention to deep learning deployment systems accounting for model performance. We have open-sourced the benchmark and framework at https://modeltc.github.io/systemnoise_web.
Abstract:Existing pose estimation approaches can be categorized into single-stage and multi-stage methods. While a multi-stage architecture is seemingly more suitable for the task, the performance of current multi-stage methods is not as competitive as single-stage ones. This work studies this issue. We argue that the current unsatisfactory performance comes from various insufficient design in current methods. We propose several improvements on the architecture design, feature flow, and loss function. The resulting multi-stage network outperforms all previous works and obtains the best performance on COCO keypoint challenge 2018. The source code will be released.