Abstract:Self-improving agents aim to continuously acquire new capabilities with minimal supervision. However, current approaches face two key limitations: their self-improvement processes are often rigid, fail to generalize across tasks domains, and struggle to scale with increasing agent capabilities. We argue that effective self-improvement requires intrinsic metacognitive learning, defined as an agent's intrinsic ability to actively evaluate, reflect on, and adapt its own learning processes. Drawing inspiration from human metacognition, we introduce a formal framework comprising three components: metacognitive knowledge (self-assessment of capabilities, tasks, and learning strategies), metacognitive planning (deciding what and how to learn), and metacognitive evaluation (reflecting on learning experiences to improve future learning). Analyzing existing self-improving agents, we find they rely predominantly on extrinsic metacognitive mechanisms, which are fixed, human-designed loops that limit scalability and adaptability. Examining each component, we contend that many ingredients for intrinsic metacognition are already present. Finally, we explore how to optimally distribute metacognitive responsibilities between humans and agents, and robustly evaluate and improve intrinsic metacognitive learning, key challenges that must be addressed to enable truly sustained, generalized, and aligned self-improvement.
Abstract:Current labor markets are strongly affected by the economic forces of adverse selection, moral hazard, and reputation, each of which arises due to $\textit{incomplete information}$. These economic forces will still be influential after AI agents are introduced, and thus, agents must use metacognitive and strategic reasoning to perform effectively. Metacognition is a form of $\textit{internal reasoning}$ that includes the capabilities for self-assessment, task understanding, and evaluation of strategies. Strategic reasoning is $\textit{external reasoning}$ that covers holding beliefs about other participants in the labor market (e.g., competitors, colleagues), making strategic decisions, and learning about others over time. Both types of reasoning are required by agents as they decide among the many $\textit{actions}$ they can take in labor markets, both within and outside their jobs. We discuss current research into metacognitive and strategic reasoning and the areas requiring further development.
Abstract:Decision trees are a crucial class of models offering robust predictive performance and inherent interpretability across various domains, including healthcare, finance, and logistics. However, current tree induction methods often face limitations such as suboptimal solutions from greedy methods or prohibitive computational costs and limited applicability of exact optimization approaches. To address these challenges, we propose an evolutionary optimization method for decision tree induction based on genetic programming (GP). Our key innovation is the integration of semantic priors and domain-specific knowledge about the search space into the optimization algorithm. To this end, we introduce $\texttt{LLEGO}$, a framework that incorporates semantic priors into genetic search operators through the use of Large Language Models (LLMs), thereby enhancing search efficiency and targeting regions of the search space that yield decision trees with superior generalization performance. This is operationalized through novel genetic operators that work with structured natural language prompts, effectively utilizing LLMs as conditional generative models and sources of semantic knowledge. Specifically, we introduce $\textit{fitness-guided}$ crossover to exploit high-performing regions, and $\textit{diversity-guided}$ mutation for efficient global exploration of the search space. These operators are controlled by corresponding hyperparameters that enable a more nuanced balance between exploration and exploitation across the search space. Empirically, we demonstrate across various benchmarks that $\texttt{LLEGO}$ evolves superior-performing trees compared to existing tree induction methods, and exhibits significantly more efficient search performance compared to conventional GP approaches.
Abstract:Despite the impressive performance of large language models (LLMs) across various benchmarks, their ability to address ambiguously specified problems--frequent in real-world interactions--remains underexplored. To address this gap, we introduce a formal definition of task ambiguity and frame the problem of task disambiguation through the lens of Bayesian Experimental Design. By posing clarifying questions, LLM agents can acquire additional task specifications, progressively narrowing the space of viable solutions and reducing the risk of generating unsatisfactory outputs. Yet, generating effective clarifying questions requires LLM agents to engage in a form of meta-cognitive reasoning, an ability LLMs may presently lack. Our proposed approach of active task disambiguation enables LLM agents to generate targeted questions maximizing the information gain. Effectively, this approach shifts the load from implicit to explicit reasoning about the space of viable solutions. Empirical results demonstrate that this form of question selection leads to more effective task disambiguation in comparison to approaches relying on reasoning solely within the space of questions.
Abstract:Mathematical optimization is fundamental to decision-making across diverse domains, from operations research to healthcare. Yet, translating real-world problems into optimization models remains a formidable challenge, often demanding specialized expertise. This paper formally introduces the concept of $\textbf{autoformulation}$ -- an automated approach to creating optimization models from natural language descriptions for commercial solvers. We identify the three core challenges of autoformulation: (1) defining the vast, problem-dependent hypothesis space, (2) efficiently searching this space under uncertainty, and (3) evaluating formulation correctness (ensuring a formulation accurately represents the problem). To address these challenges, we introduce a novel method leveraging $\textit{Large Language Models}$ (LLMs) within a $\textit{Monte-Carlo Tree Search}$ framework. This approach systematically explores the space of possible formulations by exploiting the hierarchical nature of optimization modeling. LLMs serve two key roles: as dynamic formulation hypothesis generators and as evaluators of formulation correctness. To enhance search efficiency, we introduce a pruning technique to remove trivially equivalent formulations. Empirical evaluations across benchmarks containing linear and mixed-integer programming problems demonstrate our method's superior performance. Additionally, we observe significant efficiency gains from employing LLMs for correctness evaluation and from our pruning techniques.
Abstract:Digital Twins (DTs) are computational models that simulate the states and temporal dynamics of real-world systems, playing a crucial role in prediction, understanding, and decision-making across diverse domains. However, existing approaches to DTs often struggle to generalize to unseen conditions in data-scarce settings, a crucial requirement for such models. To address these limitations, our work begins by establishing the essential desiderata for effective DTs. Hybrid Digital Twins ($\textbf{HDTwins}$) represent a promising approach to address these requirements, modeling systems using a composition of both mechanistic and neural components. This hybrid architecture simultaneously leverages (partial) domain knowledge and neural network expressiveness to enhance generalization, with its modular design facilitating improved evolvability. While existing hybrid models rely on expert-specified architectures with only parameters optimized on data, $\textit{automatically}$ specifying and optimizing HDTwins remains intractable due to the complex search space and the need for flexible integration of domain priors. To overcome this complexity, we propose an evolutionary algorithm ($\textbf{HDTwinGen}$) that employs Large Language Models (LLMs) to autonomously propose, evaluate, and optimize HDTwins. Specifically, LLMs iteratively generate novel model specifications, while offline tools are employed to optimize emitted parameters. Correspondingly, proposed models are evaluated and evolved based on targeted feedback, enabling the discovery of increasingly effective hybrid models. Our empirical results reveal that HDTwinGen produces generalizable, sample-efficient, and evolvable models, significantly advancing DTs' efficacy in real-world applications.
Abstract:Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection. Leveraging the dynamic sparse training (DST) algorithms within SNNs has demonstrated promising feature selection capabilities while drastically reducing computational overheads. Despite these advancements, several critical aspects remain insufficiently explored for feature selection. Questions persist regarding the choice of the DST algorithm for network training, the choice of metric for ranking features/neurons, and the comparative performance of these methods across diverse datasets when compared to dense networks. This paper addresses these gaps by presenting a comprehensive systematic analysis of feature selection with sparse neural networks. Moreover, we introduce a novel metric considering sparse neural network characteristics, which is designed to quantify feature importance within the context of SNNs. Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50\%$ memory and $55\%$ FLOPs reduction compared to the dense networks, while outperforming them in terms of the quality of the selected features. Our code and the supplementary material are available on GitHub (\url{https://github.com/zahraatashgahi/Neuron-Attribution}).
Abstract:Bayesian optimization (BO) is a powerful approach for optimizing complex and expensive-to-evaluate black-box functions. Its importance is underscored in many applications, notably including hyperparameter tuning, but its efficacy depends on efficiently balancing exploration and exploitation. While there has been substantial progress in BO methods, striking this balance still remains a delicate process. In this light, we present \texttt{LLAMBO}, a novel approach that integrates the capabilities of large language models (LLM) within BO. At a high level, we frame the BO problem in natural language terms, enabling LLMs to iteratively propose promising solutions conditioned on historical evaluations. More specifically, we explore how combining contextual understanding, few-shot learning proficiency, and domain knowledge of LLMs can enhance various components of model-based BO. Our findings illustrate that \texttt{LLAMBO} is effective at zero-shot warmstarting, and improves surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse. Our approach is performed in context and does not require LLM finetuning. Additionally, it is modular by design, allowing individual components to be integrated into existing BO frameworks, or function cohesively as an end-to-end method. We empirically validate \texttt{LLAMBO}'s efficacy on the problem of hyperparameter tuning, highlighting strong empirical performance across a range of diverse benchmarks, proprietary, and synthetic tasks.
Abstract:This paper addresses unsupervised representation learning on tabular data containing multiple views generated by distinct sources of measurement. Traditional methods, which tackle this problem using the multi-view framework, are constrained by predefined assumptions that assume feature sets share the same information and representations should learn globally shared factors. However, this assumption is not always valid for real-world tabular datasets with complex dependencies between feature sets, resulting in localized information that is harder to learn. To overcome this limitation, we propose a data-driven approach that learns feature set dependencies by representing feature sets as graph nodes and their relationships as learnable edges. Furthermore, we introduce LEGATO, a novel hierarchical graph autoencoder that learns a smaller, latent graph to aggregate information from multiple views dynamically. This approach results in latent graph components that specialize in capturing localized information from different regions of the input, leading to superior downstream performance.
Abstract:Despite their success with unstructured data, deep neural networks are not yet a panacea for structured tabular data. In the tabular domain, their efficiency crucially relies on various forms of regularization to prevent overfitting and provide strong generalization performance. Existing regularization techniques include broad modelling decisions such as choice of architecture, loss functions, and optimization methods. In this work, we introduce Tabular Neural Gradient Orthogonalization and Specialization (TANGOS), a novel framework for regularization in the tabular setting built on latent unit attributions. The gradient attribution of an activation with respect to a given input feature suggests how the neuron attends to that feature, and is often employed to interpret the predictions of deep networks. In TANGOS, we take a different approach and incorporate neuron attributions directly into training to encourage orthogonalization and specialization of latent attributions in a fully-connected network. Our regularizer encourages neurons to focus on sparse, non-overlapping input features and results in a set of diverse and specialized latent units. In the tabular domain, we demonstrate that our approach can lead to improved out-of-sample generalization performance, outperforming other popular regularization methods. We provide insight into why our regularizer is effective and demonstrate that TANGOS can be applied jointly with existing methods to achieve even greater generalization performance.