Center of Excellence for Document Analysis and Recognition, Department of Computer Science, State University of New York at Buffalo
Abstract:Model-based methods play a key role in the reconstruction of compressed sensing (CS) MRI. Finding an effective prior to describe the statistical distribution of the image family of interest is crucial for model-based methods. Plug-and-play (PnP) is a general framework that uses denoising algorithms as the prior or regularizer. Recent work showed that PnP methods with denoisers based on pretrained convolutional neural networks outperform other classical regularizers in CS MRI reconstruction. However, the numerical solvers for PnP can be slow for CS MRI reconstruction. This paper proposes a preconditioned PnP (P^2nP) method to accelerate the convergence speed. Moreover, we provide proofs of the fixed-point convergence of the P^2nP iterates. Numerical experiments on CS MRI reconstruction with non-Cartesian sampling trajectories illustrate the effectiveness and efficiency of the P^2nP approach.
Abstract:Over the years, computational imaging with accurate nonlinear physical models has drawn considerable interest due to its ability to achieve high-quality reconstructions. However, such nonlinear models are computationally demanding. A popular choice for solving the corresponding inverse problems is accelerated stochastic proximal methods (ASPMs), with the caveat that each iteration is expensive. To overcome this issue, we propose a mini-batch quasi-Newton proximal method (BQNPM) tailored to image-reconstruction problems with total-variation regularization. It involves an efficient approach that computes a weighted proximal mapping at a cost similar to that of the proximal mapping in ASPMs. However, BQNPM requires fewer iterations than ASPMs to converge. We assess the performance of BQNPM on three-dimensional inverse-scattering problems with linear and nonlinear physical models. Our results on simulated and real data show the effectiveness and efficiency of BQNPM,
Abstract:Large Language Models (LLMs), such as the Generative Pretrained Transformer (GPT), have achieved tremendous success in various language tasks, but their emergent abilities have also raised many questions, concerns, and challenges that need to be addressed. To gain a better understanding of the models' inner mechanisms, we analyze the hidden state and channel wave dynamics in a small GPT, focusing on the coherence of wave patterns in terms of cross-channel correlation and individual auto-correlation. Our findings suggest that wave dynamics offer consistent and repeatable intrinsic oscillation modes, along with context-aware plasticity and expressiveness in language generation. By analyzing wave patterns, coherence, and clustering, we provide a systematic way to identify and interpret the functionality of the hidden state channels, paving the way to understand and control higher-level language pattern formation. In addition, we investigate the Poisson statistics of spelling errors in text sequence generation across various levels of model training and observe a phase-transition-like process. As coherence builds up, there is a competition between the generation of correct and misspelled words. However, once the model is adequately trained and significant coherence has emerged, the coherent process becomes strong enough to effectively suppress spelling errors, preventing the cascade amplification of defects. The distribution of correct spellings transitions from Poissonian to Sub-Poissonian, while the distribution of misspellings shows the opposite trend. By leveraging concepts and techniques from quantum physics, we gain novel insights into the dynamics of the small GPT. This approach can be extended to larger language models that exhibit more complex coherent language patterns, opening up opportunities to interpret their emergent capabilities and develop more specialized models.
Abstract:Model-based methods are widely used for reconstruction in compressed sensing (CS) magnetic resonance imaging (MRI), using priors to describe the images of interest. The reconstruction process is equivalent to solving a composite optimization problem. Accelerated proximal methods (APMs) are very popular approaches for such problems. This paper proposes a complex quasi-Newton proximal method (CQNPM) for the wavelet and total variation based CS MRI reconstruction. Compared with APMs, CQNPM requires fewer iterations to converge but needs to compute a more challenging proximal mapping called weighted proximal mapping (WPM). To make CQNPM more practical, we propose efficient methods to solve the related WPM. Numerical experiments demonstrate the effectiveness and efficiency of CQNPM.
Abstract:Steerable models can provide very general and flexible equivariance by formulating equivariance requirements in the language of representation theory and feature fields, which has been recognized to be effective for many vision tasks. However, deriving steerable models for 3D rotations is much more difficult than that in the 2D case, due to more complicated mathematics of 3D rotations. In this work, we employ partial differential operators (PDOs) to model 3D filters, and derive general steerable 3D CNNs, which are called PDO-s3DCNNs. We prove that the equivariant filters are subject to linear constraints, which can be solved efficiently under various conditions. As far as we know, PDO-s3DCNNs are the most general steerable CNNs for 3D rotations, in the sense that they cover all common subgroups of $SO(3)$ and their representations, while existing methods can only be applied to specific groups and representations. Extensive experiments show that our models can preserve equivariance well in the discrete domain, and outperform previous works on SHREC'17 retrieval and ISBI 2012 segmentation tasks with a low network complexity.
Abstract:Diffraction tomography is a noninvasive technique that estimates the refractive indices of unknown objects and involves an inverse-scattering problem governed by the wave equation. Recent works have shown the benefit of nonlinear models of wave propagation that account for multiple scattering and reflections. In particular, the Lippmann-Schwinger~(LiS) model defines an inverse problem to simulate the wave propagation. Although accurate, this model is hard to solve when the samples are highly contrasted or have a large physical size. In this work, we introduce instead a Helmholtz-based nonlinear model for inverse scattering. To solve the corresponding inverse problem, we propose a robust and efficient multigrid-based solver. Moreover, we show that our method is a suitable alternative to the LiS model, especially for strongly scattering objects. Numerical experiments on simulated and real data demonstrate the effectiveness of the Helmholtz model, as well as the efficiency of the proposed multigrid method.
Abstract:This paper considers the problem of simultaneously learning the Sensing Matrix and Sparsifying Dictionary (SMSD) on a large training dataset. To address the formulated joint learning problem, we propose an online algorithm that consists of a closed-form solution for optimizing the sensing matrix with a fixed sparsifying dictionary and a stochastic method for learning the sparsifying dictionary on a large dataset when the sensing matrix is given. Benefiting from training on a large dataset, the obtained compressive sensing (CS) system by the proposed algorithm yields a much better performance in terms of signal recovery accuracy than the existing ones. The simulation results on natural images demonstrate the effectiveness of the suggested online algorithm compared with the existing methods.
Abstract:Models play an important role in inverse problems, serving as the prior for representing the original signal to be recovered. REgularization by Denoising (RED) is a recently introduced general framework for constructing such priors using state-of-the-art denoising algorithms. Using RED, solving inverse problems is shown to amount to an iterated denoising process. However, as the complexity of denoising algorithms is generally high, this might lead to an overall slow algorithm. In this paper, we suggest an accelerated technique based on vector extrapolation (VE) to speed-up existing RED solvers. Numerical experiments validate the obtained gain by VE, leading to nearly 70\% savings in computations compared with the original solvers.
Abstract:We consider designing a sparse sensing matrix which contains few non-zero entries per row and can be efficiently applied for capturing signals. The optimal sparse sensing matrix is designed so that it is also robust to sparse representation error of the signals and the Gram matrix of the equivalent dictionary is as close as possible to a target Gram matrix with small mutual coherence. An alternating minimization-based algorithm is proposed for solving the optimal design problem. We provide convergence analysis of the proposed algorithm which is proved to have sequence convergence, i.e., it generates a sequence that converges to a stationary point of the minimization problem. Experimental results show that the obtained sparse sensing matrix (even each row is extremely sparse) significantly outperforms a random dense sensing matrix in terms of signal reconstruction accuracy of synthetic data and peak signal-to-noise ratio (PSNR) for real images.
Abstract:Our objective is to efficiently design a robust projection matrix $\Phi$ for the Compressive Sensing (CS) systems when applied to the signals that are not exactly sparse. The optimal projection matrix is obtained by mainly minimizing the average coherence of the equivalent dictionary. In order to drop the requirement of the sparse representation error (SRE) for a set of training data as in [15] [16], we introduce a novel penalty function independent of a particular SRE matrix. Without requiring of training data, we can efficiently design the robust projection matrix and apply it for most of CS systems, like a CS system for image processing with a conventional wavelet dictionary in which the SRE matrix is generally not available. Simulation results demonstrate the efficiency and effectiveness of the proposed approach compared with the state-of-the-art methods. In addition, we experimentally demonstrate with natural images that under similar compression rate, a CS system with a learned dictionary in high dimensions outperforms the one in low dimensions in terms of reconstruction accuracy. This together with the fact that our proposed method can efficiently work in high dimension suggests that a CS system can be potentially implemented beyond the small patches in sparsity-based image processing.