Abstract:Parameter-efficient tuning (PET) techniques calibrate the model's predictions on downstream tasks by freezing the pre-trained models and introducing a small number of learnable parameters. However, despite the numerous PET methods proposed, their robustness has not been thoroughly investigated. In this paper, we systematically explore the robustness of four classical PET techniques (e.g., VPT, Adapter, AdaptFormer, and LoRA) under both white-box attacks and information perturbations. For white-box attack scenarios, we first analyze the performance of PET techniques using FGSM and PGD attacks. Subsequently, we further explore the transferability of adversarial samples and the impact of learnable parameter quantities on the robustness of PET methods. Under information perturbation attacks, we introduce four distinct perturbation strategies, including Patch-wise Drop, Pixel-wise Drop, Patch Shuffle, and Gaussian Noise, to comprehensively assess the robustness of these PET techniques in the presence of information loss. Via these extensive studies, we enhance the understanding of the robustness of PET methods, providing valuable insights for improving their performance in computer vision applications. The code is available at https://github.com/JCruan519/PETRobustness.
Abstract:Colonoscopic Polyp Re-Identification aims to match the same polyp from a large gallery with images from different views taken using different cameras and plays an important role in the prevention and treatment of colorectal cancer in computer-aided diagnosis. However, traditional methods for object ReID directly adopting CNN models trained on the ImageNet dataset usually produce unsatisfactory retrieval performance on colonoscopic datasets due to the large domain gap. Worsely, these solutions typically learn unimodal modal representations on the basis of visual samples, which fails to explore complementary information from different modalities. To address this challenge, we propose a novel Deep Multimodal Collaborative Learning framework named DMCL for polyp re-identification, which can effectively encourage modality collaboration and reinforce generalization capability in medical scenarios. On the basis of it, a dynamic multimodal feature fusion strategy is introduced to leverage the optimized multimodal representations for multimodal fusion via end-to-end training. Experiments on the standard benchmarks show the benefits of the multimodal setting over state-of-the-art unimodal ReID models, especially when combined with the specialized multimodal fusion strategy.
Abstract:Adapter-Tuning (AT) method involves freezing a pre-trained model and introducing trainable adapter modules to acquire downstream knowledge, thereby calibrating the model for better adaptation to downstream tasks. This paper proposes a distillation framework for the AT method instead of crafting a carefully designed adapter module, which aims to improve fine-tuning performance. For the first time, we explore the possibility of combining the AT method with knowledge distillation. Via statistical analysis, we observe significant differences in the knowledge acquisition between adapter modules of different models. Leveraging these differences, we propose a simple yet effective framework called inverse Distillation Adapter-Tuning (iDAT). Specifically, we designate the smaller model as the teacher and the larger model as the student. The two are jointly trained, and online knowledge distillation is applied to inject knowledge of different perspective to student model, and significantly enhance the fine-tuning performance on downstream tasks. Extensive experiments on the VTAB-1K benchmark with 19 image classification tasks demonstrate the effectiveness of iDAT. The results show that using existing AT method within our iDAT framework can further yield a 2.66% performance gain, with only an additional 0.07M trainable parameters. Our approach compares favorably with state-of-the-arts without bells and whistles. Our code is available at https://github.com/JCruan519/iDAT.
Abstract:In the realm of medical image segmentation, both CNN-based and Transformer-based models have been extensively explored. However, CNNs exhibit limitations in long-range modeling capabilities, whereas Transformers are hampered by their quadratic computational complexity. Recently, State Space Models (SSMs), exemplified by Mamba, have emerged as a promising approach. They not only excel in modeling long-range interactions but also maintain a linear computational complexity. In this paper, leveraging state space models, we propose a U-shape architecture model for medical image segmentation, named Vision Mamba UNet (VM-UNet). Specifically, the Visual State Space (VSS) block is introduced as the foundation block to capture extensive contextual information, and an asymmetrical encoder-decoder structure is constructed. We conduct comprehensive experiments on the ISIC17, ISIC18, and Synapse datasets, and the results indicate that VM-UNet performs competitively in medical image segmentation tasks. To our best knowledge, this is the first medical image segmentation model constructed based on the pure SSM-based model. We aim to establish a baseline and provide valuable insights for the future development of more efficient and effective SSM-based segmentation systems. Our code is available at https://github.com/JCruan519/VM-UNet.
Abstract:Existing research on audio classification faces challenges in recognizing attributes of passive underwater vessel scenarios and lacks well-annotated datasets due to data privacy concerns. In this study, we introduce CLAPP (Contrastive Language-Audio Pre-training in Passive Underwater Vessel Classification), a novel model. Our aim is to train a neural network using a wide range of vessel audio and vessel state text pairs obtained from an oceanship dataset. CLAPP is capable of directly learning from raw vessel audio data and, when available, from carefully curated labels, enabling improved recognition of vessel attributes in passive underwater vessel scenarios. Model's zero-shot capability allows predicting the most relevant vessel state description for a given vessel audio, without directly optimizing for the task. Our approach aims to solve 2 challenges: vessel audio-text classification and passive underwater vessel audio attribute recognition. The proposed method achieves new state-of-the-art results on both Deepship and Shipsear public datasets, with a notable margin of about 7%-13% for accuracy compared to prior methods on zero-shot task.
Abstract:Recently, Visual Transformer (ViT) has been extensively used in medical image segmentation (MIS) due to applying self-attention mechanism in the spatial domain to modeling global knowledge. However, many studies have focused on improving models in the spatial domain while neglecting the importance of frequency domain information. Therefore, we propose Multi-axis External Weights UNet (MEW-UNet) based on the U-shape architecture by replacing self-attention in ViT with our Multi-axis External Weights block. Specifically, our block performs a Fourier transform on the three axes of the input features and assigns the external weight in the frequency domain, which is generated by our External Weights Generator. Then, an inverse Fourier transform is performed to change the features back to the spatial domain. We evaluate our model on four datasets, including Synapse, ACDC, ISIC17 and ISIC18 datasets, and our approach demonstrates competitive performance, owing to its effective utilization of frequency domain information.
Abstract:With the success of pre-trained visual-language (VL) models such as CLIP in visual representation tasks, transferring pre-trained models to downstream tasks has become a crucial paradigm. Recently, the prompt tuning paradigm, which draws inspiration from natural language processing (NLP), has made significant progress in VL field. However, preceding methods mainly focus on constructing prompt templates for text and visual inputs, neglecting the gap in class label representations between the VL models and downstream tasks. To address this challenge, we introduce an innovative label alignment method named \textbf{LAMM}, which can dynamically adjust the category embeddings of downstream datasets through end-to-end training. Moreover, to achieve a more appropriate label distribution, we propose a hierarchical loss, encompassing the alignment of the parameter space, feature space, and logits space. We conduct experiments on 11 downstream vision datasets and demonstrate that our method significantly improves the performance of existing multi-modal prompt learning models in few-shot scenarios, exhibiting an average accuracy improvement of 2.31(\%) compared to the state-of-the-art methods on 16 shots. Moreover, our methodology exhibits the preeminence in continual learning compared to other prompt tuning methods. Importantly, our method is synergistic with existing prompt tuning methods and can boost the performance on top of them. Our code and dataset will be publicly available at https://github.com/gaojingsheng/LAMM.
Abstract:Chromosome recognition is an essential task in karyotyping, which plays a vital role in birth defect diagnosis and biomedical research. However, existing classification methods face significant challenges due to the inter-class similarity and intra-class variation of chromosomes. To address this issue, we propose a supervised contrastive learning strategy that is tailored to train model-agnostic deep networks for reliable chromosome classification. This method enables extracting fine-grained chromosomal embeddings in latent space. These embeddings effectively expand inter-class boundaries and reduce intra-class variations, enhancing their distinctiveness in predicting chromosome types. On top of two large-scale chromosome datasets, we comprehensively validate the power of our contrastive learning strategy in boosting cutting-edge deep networks such as Transformers and ResNets. Extensive results demonstrate that it can significantly improve models' generalization performance, with an accuracy improvement up to +4.5%. Codes and pretrained models will be released upon acceptance of this work.
Abstract:The Parameter-Efficient Fine-Tuning (PEFT) method, which adjusts or introduces fewer trainable parameters to calibrate pre-trained models on downstream tasks, has become a recent research interest. However, existing PEFT methods within the traditional fine-tiuning framework have two main shortcomings: 1) They overlook the explicit association between trainable parameters and downstream task knowledge. 2) They neglect the interaction between the intrinsic task-agnostic knowledge of pre-trained models and the task-specific knowledge in downstream tasks. To address this gap, we propose a novel fine-tuning framework, named GIST, in a plug-and-play manner. Specifically, our framework first introduces a trainable token, called the Gist token, when applying PEFT methods on downstream tasks. This token serves as an aggregator of the task-specific knowledge learned by the PEFT methods and forms an explicit association with downstream knowledge. Furthermore, to facilitate explicit interaction between task-agnostic and task-specific knowledge, we introduce the concept of Knowledge Interaction via a Bidirectional Kullback-Leibler Divergence objective. As a result, PEFT methods within our framework can make the pre-trained model understand downstream tasks more comprehensively by leveraging the knowledge interaction. Extensive experiments demonstrate the universality and scalability of our framework. Notably, on the VTAB-1K benchmark, we employ the Adapter (a prevalent PEFT method) within our GIST framework and achieve a performance boost of 2.25%, with an increase of only 0.8K parameters. The Code will be released.
Abstract:Gesture recognition is a foundational task in human-machine interaction (HMI). While there has been significant progress in gesture recognition based on surface electromyography (sEMG), accurate recognition of predefined gestures only within a closed set is still inadequate in practice. It is essential to effectively discern and reject unknown gestures of disinterest in a robust system. Numerous methods based on prototype learning (PL) have been proposed to tackle this open set recognition (OSR) problem. However, they do not fully explore the inherent distinctions between known and unknown classes. In this paper, we propose a more effective PL method leveraging two novel and inherent distinctions, feature activation level and projection inconsistency. Specifically, the Feature Activation Enhancement Mechanism (FAEM) widens the gap in feature activation values between known and unknown classes. Furthermore, we introduce Orthogonal Prototype Learning (OPL) to construct multiple perspectives. OPL acts to project a sample from orthogonal directions to maximize the distinction between its two projections, where unknown samples will be projected near the clusters of different known classes while known samples still maintain intra-class similarity. Our proposed method simultaneously achieves accurate closed-set classification for predefined gestures and effective rejection for unknown gestures. Extensive experiments demonstrate its efficacy and superiority in open-set gesture recognition based on sEMG.