Abstract:Virtual interventions enable the physics-based simulation of device deployment within coronary arteries. This framework allows for counterfactual reasoning by deploying the same device in different arterial anatomies. However, current methods to create such counterfactual arteries face a trade-off between controllability and realism. In this study, we investigate how Latent Diffusion Models (LDMs) can custom synthesize coronary anatomy for virtual intervention studies based on mid-level anatomic constraints such as topological validity, local morphological shape, and global skeletal structure. We also extend diffusion model guidance strategies to the context of morpho-skeletal conditioning and propose a novel guidance method for continuous attributes that adaptively updates the negative guiding condition throughout sampling. Our framework enables the generation and editing of coronary anatomy in a controllable manner, allowing device designers to derive mechanistic insights regarding anatomic variation and simulated device deployment.
Abstract:The consequences of a healthcare data breach can be devastating for the patients, providers, and payers. The average financial impact of a data breach in recent months has been estimated to be close to USD 10 million. This is especially significant for healthcare organizations in India that are managing rapid digitization while still establishing data governance procedures that align with the letter and spirit of the law. Computer-based systems for de-identification of personal information are vulnerable to data drift, often rendering them ineffective in cross-institution settings. Therefore, a rigorous assessment of existing de-identification against local health datasets is imperative to support the safe adoption of digital health initiatives in India. Using a small set of de-identified patient discharge summaries provided by an Indian healthcare institution, in this paper, we report the nominal performance of de-identification algorithms (based on language models) trained on publicly available non-Indian datasets, pointing towards a lack of cross-institutional generalization. Similarly, experimentation with off-the-shelf de-identification systems reveals potential risks associated with the approach. To overcome data scarcity, we explore generating synthetic clinical reports (using publicly available and Indian summaries) by performing in-context learning over Large Language Models (LLMs). Our experiments demonstrate the use of generated reports as an effective strategy for creating high-performing de-identification systems with good generalization capabilities.
Abstract:Numerical simulations can model the physical processes that govern cardiovascular device deployment. When such simulations incorporate digital twins; computational models of patient-specific anatomy, they can expedite and de-risk the device design process. Nonetheless, the exclusive use of patient-specific data constrains the anatomic variability which can be precisely or fully explored. In this study, we investigate the capacity of Latent Diffusion Models (LDMs) to edit digital twins to create anatomic variants, which we term digital siblings. Digital twins and their corresponding siblings can serve as the basis for comparative simulations, enabling the study of how subtle anatomic variations impact the simulated deployment of cardiovascular devices, as well as the augmentation of virtual cohorts for device assessment. However, while diffusion models have been characterized in their ability to edit natural images, their capacity to anatomically edit digital twins has yet to be studied. Using a case example centered on 3D digital twins of cardiac anatomy, we implement various methods for generating digital siblings and characterize them through morphological and topological analyses. We specifically edit digital twins to introduce anatomic variation at different spatial scales and within localized regions, demonstrating the existence of bias towards common anatomic features. We further show that such anatomic bias can be leveraged for virtual cohort augmentation through selective editing, partially alleviating issues related to dataset imbalance and lack of diversity. Our experimental framework thus delineates the limits and capabilities of using latent diffusion models in synthesizing anatomic variation for in silico trials.
Abstract:We present Neural Signal Operated Intelligent Robots (NOIR), a general-purpose, intelligent brain-robot interface system that enables humans to command robots to perform everyday activities through brain signals. Through this interface, humans communicate their intended objects of interest and actions to the robots using electroencephalography (EEG). Our novel system demonstrates success in an expansive array of 20 challenging, everyday household activities, including cooking, cleaning, personal care, and entertainment. The effectiveness of the system is improved by its synergistic integration of robot learning algorithms, allowing for NOIR to adapt to individual users and predict their intentions. Our work enhances the way humans interact with robots, replacing traditional channels of interaction with direct, neural communication. Project website: https://noir-corl.github.io/.
Abstract:The conceptualization of a claim lies at the core of argument mining. The segregation of claims is complex, owing to the divergence in textual syntax and context across different distributions. Another pressing issue is the unavailability of labeled unstructured text for experimentation. In this paper, we propose LESA, a framework which aims at advancing headfirst into expunging the former issue by assembling a source-independent generalized model that captures syntactic features through part-of-speech and dependency embeddings, as well as contextual features through a fine-tuned language model. We resolve the latter issue by annotating a Twitter dataset which aims at providing a testing ground on a large unstructured dataset. Experimental results show that LESA improves upon the state-of-the-art performance across six benchmark claim datasets by an average of 3 claim-F1 points for in-domain experiments and by 2 claim-F1 points for general-domain experiments. On our dataset too, LESA outperforms existing baselines by 1 claim-F1 point on the in-domain experiments and 2 claim-F1 points on the general-domain experiments. We also release comprehensive data annotation guidelines compiled during the annotation phase (which was missing in the current literature).