Abstract:In recent years, training data attribution (TDA) methods have emerged as a promising direction for the interpretability of neural networks. While research around TDA is thriving, limited effort has been dedicated to the evaluation of attributions. Similar to the development of evaluation metrics for traditional feature attribution approaches, several standalone metrics have been proposed to evaluate the quality of TDA methods across various contexts. However, the lack of a unified framework that allows for systematic comparison limits trust in TDA methods and stunts their widespread adoption. To address this research gap, we introduce Quanda, a Python toolkit designed to facilitate the evaluation of TDA methods. Beyond offering a comprehensive set of evaluation metrics, Quanda provides a uniform interface for seamless integration with existing TDA implementations across different repositories, thus enabling systematic benchmarking. The toolkit is user-friendly, thoroughly tested, well-documented, and available as an open-source library on PyPi and under https://github.com/dilyabareeva/quanda.
Abstract:In the realm of dermatological diagnoses, where the analysis of dermatoscopic and microscopic skin lesion images is pivotal for the accurate and early detection of various medical conditions, the costs associated with creating diverse and high-quality annotated datasets have hampered the accuracy and generalizability of machine learning models. We propose an innovative unsupervised augmentation solution that harnesses Generative Adversarial Network (GAN) based models and associated techniques over their latent space to generate controlled semiautomatically-discovered semantic variations in dermatoscopic images. We created synthetic images to incorporate the semantic variations and augmented the training data with these images. With this approach, we were able to increase the performance of machine learning models and set a new benchmark amongst non-ensemble based models in skin lesion classification on the HAM10000 dataset; and used the observed analytics and generated models for detailed studies on model explainability, affirming the effectiveness of our solution.
Abstract:Recently, physics-informed neural networks (PINNs) have emerged as a flexible and promising application of deep learning to partial differential equations in the physical sciences. While offering strong performance and competitive inference speeds on forward and inverse problems, their black-box nature limits interpretability, particularly regarding alignment with expected physical behavior. In the present work, we explore the application of influence functions (IFs) to validate and debug PINNs post-hoc. Specifically, we apply variations of IF-based indicators to gauge the influence of different types of collocation points on the prediction of PINNs applied to a 2D Navier-Stokes fluid flow problem. Our results demonstrate how IFs can be adapted to PINNs to reveal the potential for further studies.
Abstract:To solve ever more complex problems, Deep Neural Networks are scaled to billions of parameters, leading to huge computational costs. An effective approach to reduce computational requirements and increase efficiency is to prune unnecessary components of these often over-parameterized networks. Previous work has shown that attribution methods from the field of eXplainable AI serve as effective means to extract and prune the least relevant network components in a few-shot fashion. We extend the current state by proposing to explicitly optimize hyperparameters of attribution methods for the task of pruning, and further include transformer-based networks in our analysis. Our approach yields higher model compression rates of large transformer- and convolutional architectures (VGG, ResNet, ViT) compared to previous works, while still attaining high performance on ImageNet classification tasks. Here, our experiments indicate that transformers have a higher degree of over-parameterization compared to convolutional neural networks. Code is available at $\href{https://github.com/erfanhatefi/Pruning-by-eXplaining-in-PyTorch}{\text{this https link}}$.
Abstract:A crucial aspect of understanding the complex nature of Deep Neural Networks (DNNs) is the ability to explain learned concepts within their latent representations. While various methods exist to connect neurons to textual descriptions of human-understandable concepts, evaluating the quality of these explanation methods presents a major challenge in the field due to a lack of unified, general-purpose quantitative evaluation. In this work, we introduce CoSy (Concept Synthesis) -- a novel, architecture-agnostic framework to evaluate the quality of textual explanations for latent neurons. Given textual explanations, our proposed framework leverages a generative model conditioned on textual input to create data points representing the textual explanation. Then, the neuron's response to these explanation data points is compared with the response to control data points, providing a quality estimate of the given explanation. We ensure the reliability of our proposed framework in a series of meta-evaluation experiments and demonstrate practical value through insights from benchmarking various concept-based textual explanation methods for Computer Vision tasks, showing that tested explanation methods significantly differ in quality.
Abstract:The Model Parameter Randomisation Test (MPRT) is highly recognised in the eXplainable Artificial Intelligence (XAI) community due to its fundamental evaluative criterion: explanations should be sensitive to the parameters of the model they seek to explain. However, recent studies have raised several methodological concerns for the empirical interpretation of MPRT. In response, we propose two modifications to the original test: Smooth MPRT and Efficient MPRT. The former reduces the impact of noise on evaluation outcomes via sampling, while the latter avoids the need for biased similarity measurements by re-interpreting the test through the increase in explanation complexity after full model randomisation. Our experiments show that these modifications enhance the metric reliability, facilitating a more trustworthy deployment of explanation methods.
Abstract:Motivation. While recent studies show high accuracy in the classification of Alzheimer's disease using deep neural networks, the underlying learned concepts have not been investigated. Goals. To systematically identify changes in brain regions through concepts learned by the deep neural network for model validation. Approach. Using quantitative R2* maps we separated Alzheimer's patients (n=117) from normal controls (n=219) by using a convolutional neural network and systematically investigated the learned concepts using Concept Relevance Propagation and compared these results to a conventional region of interest-based analysis. Results. In line with established histological findings and the region of interest-based analyses, highly relevant concepts were primarily found in and adjacent to the basal ganglia. Impact. The identification of concepts learned by deep neural networks for disease classification enables validation of the models and could potentially improve reliability.
Abstract:Deep Neural Networks are prone to learning and relying on spurious correlations in the training data, which, for high-risk applications, can have fatal consequences. Various approaches to suppress model reliance on harmful features have been proposed that can be applied post-hoc without additional training. Whereas those methods can be applied with efficiency, they also tend to harm model performance by globally shifting the distribution of latent features. To mitigate unintended overcorrection of model behavior, we propose a reactive approach conditioned on model-derived knowledge and eXplainable Artificial Intelligence (XAI) insights. While the reactive approach can be applied to many post-hoc methods, we demonstrate the incorporation of reactivity in particular for P-ClArC (Projective Class Artifact Compensation), introducing a new method called R-ClArC (Reactive Class Artifact Compensation). Through rigorous experiments in controlled settings (FunnyBirds) and with a real-world dataset (ISIC2019), we show that introducing reactivity can minimize the detrimental effect of the applied correction while simultaneously ensuring low reliance on spurious features.
Abstract:The field of mechanistic interpretability aims to study the role of individual neurons in Deep Neural Networks. Single neurons, however, have the capability to act polysemantically and encode for multiple (unrelated) features, which renders their interpretation difficult. We present a method for disentangling polysemanticity of any Deep Neural Network by decomposing a polysemantic neuron into multiple monosemantic "virtual" neurons. This is achieved by identifying the relevant sub-graph ("circuit") for each "pure" feature. We demonstrate how our approach allows us to find and disentangle various polysemantic units of ResNet models trained on ImageNet. While evaluating feature visualizations using CLIP, our method effectively disentangles representations, improving upon methods based on neuron activations. Our code is available at https://github.com/maxdreyer/PURE.
Abstract:Local data attribution (or influence estimation) techniques aim at estimating the impact that individual data points seen during training have on particular predictions of an already trained Machine Learning model during test time. Previous methods either do not perform well consistently across different evaluation criteria from literature, are characterized by a high computational demand, or suffer from both. In this work we present DualView, a novel method for post-hoc data attribution based on surrogate modelling, demonstrating both high computational efficiency, as well as good evaluation results. With a focus on neural networks, we evaluate our proposed technique using suitable quantitative evaluation strategies from the literature against related principal local data attribution methods. We find that DualView requires considerably lower computational resources than other methods, while demonstrating comparable performance to competing approaches across evaluation metrics. Futhermore, our proposed method produces sparse explanations, where sparseness can be tuned via a hyperparameter. Finally, we showcase that with DualView, we can now render explanations from local data attributions compatible with established local feature attribution methods: For each prediction on (test) data points explained in terms of impactful samples from the training set, we are able to compute and visualize how the prediction on (test) sample relates to each influential training sample in terms of features recognized and by the model. We provide an Open Source implementation of DualView online, together with implementations for all other local data attribution methods we compare against, as well as the metrics reported here, for full reproducibility.