Abstract:One of the many tasks facing the typically-developing child language learner is learning to discriminate between the distinctive sounds that make up words in their native language. Here we investigate whether multimodal information--specifically adult speech coupled with video frames of speakers' faces--benefits a computational model of phonetic learning. We introduce a method for creating high-quality synthetic videos of speakers' faces for an existing audio corpus. Our learning model, when both trained and tested on audiovisual inputs, achieves up to a 8.1% relative improvement on a phoneme discrimination battery compared to a model trained and tested on audio-only input. It also outperforms the audio model by up to 3.9% when both are tested on audio-only data, suggesting that visual information facilitates the acquisition of acoustic distinctions. Visual information is especially beneficial in noisy audio environments, where an audiovisual model closes 67% of the loss in discrimination performance of the audio model in noise relative to a non-noisy environment. These results demonstrate that visual information benefits an ideal learner and illustrate some of the ways that children might be able to leverage visual cues when learning to discriminate speech sounds.
Abstract:One hallmark of human language is its combinatoriality -- reusing a relatively small inventory of building blocks to create a far larger inventory of increasingly complex structures. In this paper, we explore the idea that combinatoriality in language reflects a human inductive bias toward representational efficiency in symbol systems. We develop a computational framework for discovering structure in a writing system. Built on top of state-of-the-art library learning and program synthesis techniques, our computational framework discovers known linguistic structures in the Chinese writing system and reveals how the system evolves towards simplification under pressures for representational efficiency. We demonstrate how a library learning approach, utilizing learned abstractions and compression, may help reveal the fundamental computational principles that underlie the creation of combinatorial structures in human cognition, and offer broader insights into the evolution of efficient communication systems.
Abstract:A fundamental result in psycholinguistics is that less predictable words take a longer time to process. One theoretical explanation for this finding is Surprisal Theory (Hale, 2001; Levy, 2008), which quantifies a word's predictability as its surprisal, i.e. its negative log-probability given a context. While evidence supporting the predictions of Surprisal Theory have been replicated widely, most have focused on a very narrow slice of data: native English speakers reading English texts. Indeed, no comprehensive multilingual analysis exists. We address this gap in the current literature by investigating the relationship between surprisal and reading times in eleven different languages, distributed across five language families. Deriving estimates from language models trained on monolingual and multilingual corpora, we test three predictions associated with surprisal theory: (i) whether surprisal is predictive of reading times; (ii) whether expected surprisal, i.e. contextual entropy, is predictive of reading times; (iii) and whether the linking function between surprisal and reading times is linear. We find that all three predictions are borne out crosslinguistically. By focusing on a more diverse set of languages, we argue that these results offer the most robust link to-date between information theory and incremental language processing across languages.
Abstract:We study grammar induction with mildly context-sensitive grammars for unsupervised discontinuous parsing. Using the probabilistic linear context-free rewriting system (LCFRS) formalism, our approach fixes the rule structure in advance and focuses on parameter learning with maximum likelihood. To reduce the computational complexity of both parsing and parameter estimation, we restrict the grammar formalism to LCFRS-2 (i.e., binary LCFRS with fan-out two) and further discard rules that require O(n^6) time to parse, reducing inference to O(n^5). We find that using a large number of nonterminals is beneficial and thus make use of tensor decomposition-based rank-space dynamic programming with an embedding-based parameterization of rule probabilities to scale up the number of nonterminals. Experiments on German and Dutch show that our approach is able to induce linguistically meaningful trees with continuous and discontinuous structures
Abstract:Next-word predictions from autoregressive neural language models show remarkable sensitivity to syntax. This work evaluates the extent to which this behavior arises as a result of a learned ability to maintain implicit representations of incremental syntactic structures. We extend work in syntactic probing to the incremental setting and present several probes for extracting incomplete syntactic structure (operationalized through parse states from a stack-based parser) from autoregressive language models. We find that our probes can be used to predict model preferences on ambiguous sentence prefixes and causally intervene on model representations and steer model behavior. This suggests implicit incremental syntactic inferences underlie next-word predictions in autoregressive neural language models.
Abstract:Children's early speech often bears little resemblance to adult speech in form or content, and yet caregivers often find meaning in young children's utterances. Precisely how caregivers are able to do this remains poorly understood. We propose that successful early communication (an essential building block of language development) relies not just on children's growing linguistic knowledge, but also on adults' sophisticated inferences. These inferences, we further propose, are optimized for fine-grained details of how children speak. We evaluate these ideas using a set of candidate computational models of spoken word recognition based on deep learning and Bayesian inference, which instantiate competing hypotheses regarding the information sources used by adults to understand children. We find that the best-performing models (evaluated on datasets of adult interpretations of child speech) are those that have strong prior expectations about what children are likely to want to communicate, rather than the actual phonetic contents of what children say. We further find that adults' behavior is best characterized as well-tuned to specific children: the more closely a word recognition model is tuned to the particulars of an individual child's actual linguistic behavior, the better it predicts adults' inferences about what the child has said. These results offer a comprehensive investigation into the role of caregivers as child-directed listeners, with broader consequences for theories of language acquisition.
Abstract:We present Grammar-Based Grounded Lexicon Learning (G2L2), a lexicalist approach toward learning a compositional and grounded meaning representation of language from grounded data, such as paired images and texts. At the core of G2L2 is a collection of lexicon entries, which map each word to a tuple of a syntactic type and a neuro-symbolic semantic program. For example, the word shiny has a syntactic type of adjective; its neuro-symbolic semantic program has the symbolic form {\lambda}x. filter(x, SHINY), where the concept SHINY is associated with a neural network embedding, which will be used to classify shiny objects. Given an input sentence, G2L2 first looks up the lexicon entries associated with each token. It then derives the meaning of the sentence as an executable neuro-symbolic program by composing lexical meanings based on syntax. The recovered meaning programs can be executed on grounded inputs. To facilitate learning in an exponentially-growing compositional space, we introduce a joint parsing and expected execution algorithm, which does local marginalization over derivations to reduce the training time. We evaluate G2L2 on two domains: visual reasoning and language-driven navigation. Results show that G2L2 can generalize from small amounts of data to novel compositions of words.
Abstract:We present a targeted, scaled-up comparison of incremental processing in humans and neural language models by collecting by-word reaction time data for sixteen different syntactic test suites across a range of structural phenomena. Human reaction time data comes from a novel online experimental paradigm called the Interpolated Maze task. We compare human reaction times to by-word probabilities for four contemporary language models, with different architectures and trained on a range of data set sizes. We find that across many phenomena, both humans and language models show increased processing difficulty in ungrammatical sentence regions with human and model `accuracy' scores (a la Marvin and Linzen(2018)) about equal. However, although language model outputs match humans in direction, we show that models systematically under-predict the difference in magnitude of incremental processing difficulty between grammatical and ungrammatical sentences. Specifically, when models encounter syntactic violations they fail to accurately predict the longer reaction times observed in the human data. These results call into question whether contemporary language models are approaching human-like performance for sensitivity to syntactic violations.
Abstract:How do adults understand children's speech? Children's productions over the course of language development often bear little resemblance to typical adult pronunciations, yet caregivers nonetheless reliably recover meaning from them. Here, we employ a suite of Bayesian models of spoken word recognition to understand how adults overcome the noisiness of child language, showing that communicative success between children and adults relies heavily on adult inferential processes. By evaluating competing models on phonetically-annotated corpora, we show that adults' recovered meanings are best predicted by prior expectations fitted specifically to the child language environment, rather than to typical adult-adult language. After quantifying the contribution of this "child-directed listening" over developmental time, we discuss the consequences for theories of language acquisition, as well as the implications for commonly-used methods for assessing children's linguistic proficiency.
Abstract:While state-of-the-art neural network models continue to achieve lower perplexity scores on language modeling benchmarks, it remains unknown whether optimizing for broad-coverage predictive performance leads to human-like syntactic knowledge. Furthermore, existing work has not provided a clear picture about the model properties required to produce proper syntactic generalizations. We present a systematic evaluation of the syntactic knowledge of neural language models, testing 20 combinations of model types and data sizes on a set of 34 English-language syntactic test suites. We find substantial differences in syntactic generalization performance by model architecture, with sequential models underperforming other architectures. Factorially manipulating model architecture and training dataset size (1M--40M words), we find that variability in syntactic generalization performance is substantially greater by architecture than by dataset size for the corpora tested in our experiments. Our results also reveal a dissociation between perplexity and syntactic generalization performance.