Abstract:High-frequency signals were widely studied in the last decade to identify grid and channel conditions in PLNs. PLMs operating on the grid's physical layer are capable of transmitting such signals to infer information about the grid. Hence, PLC is a suitable communication technology for SG applications, especially suited for grid monitoring and surveillance. In this paper, we provide several contributions: 1) a classification of PLC-based applications; 2) a taxonomy of the related methodologies; 3) a review of the literature in the area of PLC Grid Information Inference (GII); and, insights that can be leveraged to further advance the field. We found research contributions addressing PLMs for three main PLC-GII applications: topology inference, anomaly detection, and physical layer key generation. In addition, various PLC-GII measurement, processing, and analysis approaches were found to provide distinctive features in measurement resolution, computation complexity, and analysis accuracy. We utilize the outcome of our review to shed light on the current limitations of the research contributions and suggest future research directions in this field.
Abstract:The colossal evolution of wireless communication technologies over the past few years has driven increased interest in its integration in a variety of less-explored environments, such as the underwater medium. In this magazine paper, we present a comprehensive discussion on a novel concept of routing protocol known as cross-media routing, incorporating the marine and aerial interfaces. In this regard, we discuss the limitation of single-media routing and advocate the need for cross-media routing along with the current status of research development in this direction. To this end, we also propose a novel cross-media routing protocol known as bubble routing for autonomous marine systems where different sets of AUVs, USVs, and airborne nodes are considered for the routing problem. We evaluate the performance of the proposed routing protocol by using the two key performance metrics, i.e., packet delivery ratio (PDR) and end-to-end delay. Moreover, we delve into the challenges encountered in cross-media routing, unveiling exciting opportunities for future research and innovation. As wireless communication expands its horizons to encompass the underwater and aerial domains, understanding and addressing these challenges will pave the way for enhanced cross-media communication and exploration.
Abstract:Adversarial attacks on deep-learning models pose a serious threat to their reliability and security. Existing defense mechanisms are narrow addressing a specific type of attack or being vulnerable to sophisticated attacks. We propose a new defense mechanism that, while being focused on image-based classifiers, is general with respect to the cited category. It is rooted on hyperspace projection. In particular, our solution provides a pseudo-random projection of the original dataset into a new dataset. The proposed defense mechanism creates a set of diverse projected datasets, where each projected dataset is used to train a specific classifier, resulting in different trained classifiers with different decision boundaries. During testing, it randomly selects a classifier to test the input. Our approach does not sacrifice accuracy over legitimate input. Other than detailing and providing a thorough characterization of our defense mechanism, we also provide a proof of concept of using four optimization-based adversarial attacks (PGD, FGSM, IGSM, and C\&W) and a generative adversarial attack testing them on the MNIST dataset. Our experimental results show that our solution increases the robustness of deep learning models against adversarial attacks and significantly reduces the attack success rate by at least 89% for optimization attacks and 78% for generative attacks. We also analyze the relationship between the number of used hyperspaces and the efficacy of the defense mechanism. As expected, the two are positively correlated, offering an easy-to-tune parameter to enforce the desired level of security. The generality and scalability of our solution and adaptability to different attack scenarios, combined with the excellent achieved results, other than providing a robust defense against adversarial attacks on deep learning networks, also lay the groundwork for future research in the field.
Abstract:The science of social bots seeks knowledge and solutions to one of the most debated forms of online misinformation. Yet, social bots research is plagued by widespread biases, hyped results, and misconceptions that set the stage for ambiguities, unrealistic expectations, and seemingly irreconcilable findings. Overcoming such issues is instrumental towards ensuring reliable solutions and reaffirming the validity of the scientific method. In this contribution we revise some recent results in social bots research, highlighting and correcting factual errors as well as methodological and conceptual issues. More importantly, we demystify common misconceptions, addressing fundamental points on how social bots research is discussed. Our analysis surfaces the need to discuss misinformation research in a rigorous, unbiased, and responsible way. This article bolsters such effort by identifying and refuting common fallacious arguments used by both proponents and opponents of social bots research as well as providing indications on the correct methodologies and sound directions for future research in the field.
Abstract:Physical-layer security is regaining traction in the research community, due to the performance boost introduced by deep learning classification algorithms. This is particularly true for sender authentication in wireless communications via radio fingerprinting. However, previous research efforts mainly focused on terrestrial wireless devices while, to the best of our knowledge, none of the previous work took into consideration satellite transmitters. The satellite scenario is generally challenging because, among others, satellite radio transducers feature non-standard electronics (usually aged and specifically designed for harsh conditions). Moreover, the fingerprinting task is specifically difficult for Low-Earth Orbit (LEO) satellites (like the ones we focus in this paper) since they orbit at about 800Km from the Earth, at a speed of around 25,000Km/h, thus making the receiver experiencing a down-link with unique attenuation and fading characteristics. In this paper, we propose PAST-AI, a methodology tailored to authenticate LEO satellites through fingerprinting of their IQ samples, using advanced AI solutions. Our methodology is tested on real data -- more than 100M I/Q samples -- collected from an extensive measurements campaign on the IRIDIUM LEO satellites constellation, lasting 589 hours. Results are striking: we prove that Convolutional Neural Networks (CNN) and autoencoders (if properly calibrated) can be successfully adopted to authenticate the satellite transducers, with an accuracy spanning between 0.8 and 1, depending on prior assumptions. The proposed methodology, the achieved results, and the provided insights, other than being interesting on their own, when associated to the dataset that we made publicly available, will also pave the way for future research in the area.
Abstract:Propaganda campaigns aim at influencing people's mindset with the purpose of advancing a specific agenda. They exploit the anonymity of the Internet, the micro-profiling ability of social networks, and the ease of automatically creating and managing coordinated networks of accounts, to reach millions of social network users with persuasive messages, specifically targeted to topics each individual user is sensitive to, and ultimately influencing the outcome on a targeted issue. In this survey, we review the state of the art on computational propaganda detection from the perspective of Natural Language Processing and Network Analysis, arguing about the need for combined efforts between these communities. We further discuss current challenges and future research directions.
Abstract:The increasing popularity of autonomous and remotely-piloted drones have paved the way for several use-cases, e.g., merchandise delivery and surveillance. In many scenarios, estimating with zero-touch the weight of the payload carried by a drone before its physical approach could be attractive, e.g., to provide an early tampering detection. In this paper, we investigate the possibility to remotely detect the weight of the payload carried by a commercial drone by analyzing its acoustic fingerprint. We characterize the difference in the thrust needed by the drone to carry different payloads, resulting in significant variations of the related acoustic fingerprint. We applied the above findings to different use-cases, characterized by different computational capabilities of the detection system. Results are striking: using the Mel-Frequency Cepstral Coefficients (MFCC) components of the audio signal and different Support Vector Machine (SVM) classifiers, we achieved a minimum classification accuracy of 98% in the detection of the specific payload class carried by the drone, using an acquisition time of 0.25 s---performances improve when using longer time acquisitions. All the data used for our analysis have been released as open-source, to enable the community to validate our findings and use such data as a ready-to-use basis for further investigations.
Abstract:A new cybersecurity attack (cryptojacking) is emerging, in both the literature and in the wild, where an adversary illicitly runs Crypto-clients software over the devices of unaware users. This attack has been proved to be very effective given the simplicity of running a Crypto-client into a target device, e.g., by means of web-based Java scripting. In this scenario, we propose Crypto-Aegis, a solution to detect and identify Crypto-clients network traffic--even when it is VPN-ed. In detail, our contributions are the following: (i) We identify and model a new type of attack, i.e., the sponge-attack, being a generalization of cryptojacking; (ii) We provide a detailed analysis of real network traffic generated by 3 major cryptocurrencies; (iii) We investigate how VPN tunneling shapes the network traffic generated by Crypto-clients by considering two major VPNbrands; (iv) We propose Crypto-Aegis, a Machine Learning (ML) based framework that builds over the previous steps to detect crypto-mining activities; and, finally, (v) We compare our results against competing solutions in the literature. Evidence from of our experimental campaign show the exceptional quality and viability of our solution--Crypto-Aegis achieves an F1-score of 0.96 and an AUC of 0.99. Given the extent and novelty of the addressed threat we believe that our approach and our results, other than being interesting on their own, also pave the way for further research in this area.
Abstract:Spambot detection in online social networks is a long-lasting challenge involving the study and design of detection techniques capable of efficiently identifying ever-evolving spammers. Recently, a new wave of social spambots has emerged, with advanced human-like characteristics that allow them to go undetected even by current state-of-the-art algorithms. In this paper, we show that efficient spambots detection can be achieved via an in-depth analysis of their collective behaviors exploiting the digital DNA technique for modeling the behaviors of social network users. Inspired by its biological counterpart, in the digital DNA representation the behavioral lifetime of a digital account is encoded in a sequence of characters. Then, we define a similarity measure for such digital DNA sequences. We build upon digital DNA and the similarity between groups of users to characterize both genuine accounts and spambots. Leveraging such characterization, we design the Social Fingerprinting technique, which is able to discriminate among spambots and genuine accounts in both a supervised and an unsupervised fashion. We finally evaluate the effectiveness of Social Fingerprinting and we compare it with three state-of-the-art detection algorithms. Among the peculiarities of our approach is the possibility to apply off-the-shelf DNA analysis techniques to study online users behaviors and to efficiently rely on a limited number of lightweight account characteristics.
Abstract:We propose a strikingly novel, simple, and effective approach to model online user behavior: we extract and analyze digital DNA sequences from user online actions and we use Twitter as a benchmark to test our proposal. We obtain an incisive and compact DNA-inspired characterization of user actions. Then, we apply standard DNA analysis techniques to discriminate between genuine and spambot accounts on Twitter. An experimental campaign supports our proposal, showing its effectiveness and viability. To the best of our knowledge, we are the first ones to identify and adapt DNA-inspired techniques to online user behavioral modeling. While Twitter spambot detection is a specific use case on a specific social media, our proposed methodology is platform and technology agnostic, hence paving the way for diverse behavioral characterization tasks.