Abstract:Radio Frequency Fingerprinting (RFF) techniques promise to authenticate wireless devices at the physical layer based on inherent hardware imperfections introduced during manufacturing. Such RF transmitter imperfections are reflected into over-the-air signals, allowing receivers to accurately identify the RF transmitting source. Recent advances in Machine Learning, particularly in Deep Learning (DL), have improved the ability of RFF systems to extract and learn complex features that make up the device-specific fingerprint. However, integrating DL techniques with RFF and operating the system in real-world scenarios presents numerous challenges. This article identifies and analyzes these challenges while considering the three reference phases of any DL-based RFF system: (i) data collection and preprocessing, (ii) training, and finally, (iii) deployment. Our investigation points out the current open problems that prevent real deployment of RFF while discussing promising future directions, thus paving the way for further research in the area.
Abstract:In the recent years cyberattacks to smart grids are becoming more frequent Among the many malicious activities that can be launched against smart grids False Data Injection FDI attacks have raised significant concerns from both academia and industry FDI attacks can affect the internal state estimation processcritical for smart grid monitoring and controlthus being able to bypass conventional Bad Data Detection BDD methods Hence prompt detection and precise localization of FDI attacks is becomming of paramount importance to ensure smart grids security and safety Several papers recently started to study and analyze this topic from different perspectives and address existing challenges Datadriven techniques and mathematical modelings are the major ingredients of the proposed approaches The primary objective of this work is to provide a systematic review and insights into FDI attacks joint detection and localization approaches considering that other surveys mainly concentrated on the detection aspects without detailed coverage of localization aspects For this purpose we select and inspect more than forty major research contributions while conducting a detailed analysis of their methodology and objectives in relation to the FDI attacks detection and localization We provide our key findings of the identified papers according to different criteria such as employed FDI attacks localization techniques utilized evaluation scenarios investigated FDI attack types application scenarios adopted methodologies and the use of additional data Finally we discuss open issues and future research directions
Abstract:Physical-layer security is regaining traction in the research community, due to the performance boost introduced by deep learning classification algorithms. This is particularly true for sender authentication in wireless communications via radio fingerprinting. However, previous research efforts mainly focused on terrestrial wireless devices while, to the best of our knowledge, none of the previous work took into consideration satellite transmitters. The satellite scenario is generally challenging because, among others, satellite radio transducers feature non-standard electronics (usually aged and specifically designed for harsh conditions). Moreover, the fingerprinting task is specifically difficult for Low-Earth Orbit (LEO) satellites (like the ones we focus in this paper) since they orbit at about 800Km from the Earth, at a speed of around 25,000Km/h, thus making the receiver experiencing a down-link with unique attenuation and fading characteristics. In this paper, we propose PAST-AI, a methodology tailored to authenticate LEO satellites through fingerprinting of their IQ samples, using advanced AI solutions. Our methodology is tested on real data -- more than 100M I/Q samples -- collected from an extensive measurements campaign on the IRIDIUM LEO satellites constellation, lasting 589 hours. Results are striking: we prove that Convolutional Neural Networks (CNN) and autoencoders (if properly calibrated) can be successfully adopted to authenticate the satellite transducers, with an accuracy spanning between 0.8 and 1, depending on prior assumptions. The proposed methodology, the achieved results, and the provided insights, other than being interesting on their own, when associated to the dataset that we made publicly available, will also pave the way for future research in the area.
Abstract:We present a new machine learning-based attack that exploits network patterns to detect the presence of smart IoT devices and running services in the WiFi radio spectrum. We perform an extensive measurement campaign of data collection, and we build up a model describing the traffic patterns characterizing three popular IoT smart home devices, i.e., Google Nest, Google Chromecast, Amazon Echo, and Amazon Echo Dot. We prove that it is possible to detect and identify with overwhelming probability their presence and the services running by the aforementioned devices in a crowded WiFi scenario. This work proves that standard encryption techniques alone are not sufficient to protect the privacy of the end-user, since the network traffic itself exposes the presence of both the device and the associated service. While more work is required to prevent non-trusted third parties to detect and identify the user's devices, we introduce "Eclipse", a technique to mitigate these types of attacks, which reshapes the traffic making the identification of the devices and the associated services similar to the random classification baseline.
Abstract:Classifying a weapon based on its muzzle blast is a challenging task that has significant applications in various security and military fields. Most of the existing works rely on ad-hoc deployment of spatially diverse microphone sensors to capture multiple replicas of the same gunshot, which enables accurate detection and identification of the acoustic source. However, carefully controlled setups are difficult to obtain in scenarios such as crime scene forensics, making the aforementioned techniques inapplicable and impractical. We introduce a novel technique that requires zero knowledge about the recording setup and is completely agnostic to the relative positions of both the microphone and shooter. Our solution can identify the category, caliber, and model of the gun, reaching over 90% accuracy on a dataset composed of 3655 samples that are extracted from YouTube videos. Our results demonstrate the effectiveness and efficiency of applying Convolutional Neural Network (CNN) in gunshot classification eliminating the need for an ad-hoc setup while significantly improving the classification performance.
Abstract:A new cybersecurity attack (cryptojacking) is emerging, in both the literature and in the wild, where an adversary illicitly runs Crypto-clients software over the devices of unaware users. This attack has been proved to be very effective given the simplicity of running a Crypto-client into a target device, e.g., by means of web-based Java scripting. In this scenario, we propose Crypto-Aegis, a solution to detect and identify Crypto-clients network traffic--even when it is VPN-ed. In detail, our contributions are the following: (i) We identify and model a new type of attack, i.e., the sponge-attack, being a generalization of cryptojacking; (ii) We provide a detailed analysis of real network traffic generated by 3 major cryptocurrencies; (iii) We investigate how VPN tunneling shapes the network traffic generated by Crypto-clients by considering two major VPNbrands; (iv) We propose Crypto-Aegis, a Machine Learning (ML) based framework that builds over the previous steps to detect crypto-mining activities; and, finally, (v) We compare our results against competing solutions in the literature. Evidence from of our experimental campaign show the exceptional quality and viability of our solution--Crypto-Aegis achieves an F1-score of 0.96 and an AUC of 0.99. Given the extent and novelty of the addressed threat we believe that our approach and our results, other than being interesting on their own, also pave the way for further research in this area.