Abstract:In the context of emerging 6G services, the realization of everything-to-everything interactions involving a myriad of physical and digital entities presents a crucial challenge. This challenge is exacerbated by resource scarcity in communication infrastructures, necessitating innovative solutions for effective service implementation. Exploring the potential of Semantic Communications (SemCom) to enhance point-to-point physical layer efficiency shows great promise in addressing this challenge. However, achieving efficient SemCom requires overcoming the significant hurdle of knowledge sharing between semantic decoders and encoders, particularly in the dynamic and non-stationary environment with stringent end-to-end quality requirements. To bridge this gap in existing literature, this paper introduces the Knowledge Base Management And Orchestration (KB-MANO) framework. Rooted in the concepts of Computing-Network Convergence (CNC) and lifelong learning, KB-MANO is crafted for the allocation of network and computing resources dedicated to updating and redistributing KBs across the system. The primary objective is to minimize the impact of knowledge management activities on actual service provisioning. A proof-of-concept is proposed to showcase the integration of KB-MANO with resource allocation in radio access networks. Finally, the paper offers insights into future research directions, emphasizing the transformative potential of semantic-oriented communication systems in the realm of 6G technology.
Abstract:In the context of advancing 6G, a substantial paradigm shift is anticipated, highlighting comprehensive everything-to-everything interactions characterized by numerous connections and stringent adherence to Quality of Service/Experience (QoS/E) prerequisites. The imminent challenge stems from resource scarcity, prompting a deliberate transition to Computing-Network Convergence (CNC) as an auspicious approach for joint resource orchestration. While CNC-based mechanisms have garnered attention, their effectiveness in realizing future services, particularly in use cases like the Metaverse, may encounter limitations due to the continually changing nature of users, services, and resources. Hence, this paper presents the concept of Adaptable CNC (ACNC) as an autonomous Machine Learning (ML)-aided mechanism crafted for the joint orchestration of computing and network resources, catering to dynamic and voluminous user requests with stringent requirements. ACNC encompasses two primary functionalities: state recognition and context detection. Given the intricate nature of the user-service-computing-network space, the paper employs dimension reduction to generate live, holistic, abstract system states in a hierarchical structure. To address the challenges posed by dynamic changes, Continual Learning (CL) is employed, classifying the system state into contexts controlled by dedicated ML agents, enabling them to operate efficiently. These two functionalities are intricately linked within a closed loop overseen by the End-to-End (E2E) orchestrator to allocate resources. The paper introduces the components of ACNC, proposes a Metaverse scenario to exemplify ACNC's role in resource provisioning with Segment Routing v6 (SRv6), outlines ACNC's workflow, details a numerical analysis for efficiency assessment, and concludes with discussions on relevant challenges and potential avenues for future research.
Abstract:We present a system for creating building-scale, easily navigable 3D maps using mainstream smartphones. In our approach, we formulate the 3D-mapping problem as an instance of Graph SLAM and infer the position of both building landmarks (fiducial markers) and navigable paths through the environment (phone poses). Our results demonstrate the system's ability to create accurate 3D maps. Further, we highlight the importance of careful selection of mapping hyperparameters and provide a novel technique for tuning these hyperparameters to adapt our algorithm to new environments.
Abstract:The Metaverse is a new paradigm that aims to create a virtual environment consisting of numerous worlds, each of which will offer a different set of services. To deal with such a dynamic and complex scenario, considering the stringent quality of service requirements aimed at the 6th generation of communication systems (6G), one potential approach is to adopt self-sustaining strategies, which can be realized by employing Adaptive Artificial Intelligence (Adaptive AI) where models are continually re-trained with new data and conditions. One aspect of self-sustainability is the management of multiple access to the frequency spectrum. Although several innovative methods have been proposed to address this challenge, mostly using Deep Reinforcement Learning (DRL), the problem of adapting agents to a non-stationary environment has not yet been precisely addressed. This paper fills in the gap in the current literature by investigating the problem of multiple access in multi-channel environments to maximize the throughput of the intelligent agent when the number of active User Equipments (UEs) may fluctuate over time. To solve the problem, a Double Deep Q-Learning (DDQL) technique empowered by Continual Learning (CL) is proposed to overcome the non-stationary situation, while the environment is unknown. Numerical simulations demonstrate that, compared to other well-known methods, the CL-DDQL algorithm achieves significantly higher throughputs with a considerably shorter convergence time in highly dynamic scenarios.
Abstract:Large language models (LLMs) have shown remarkable abilities to generate code, however their ability to develop software for embedded systems, which requires cross-domain knowledge of hardware and software has not been studied. In this paper we systematically evaluate leading LLMs (GPT-3.5, GPT-4, PaLM 2) to assess their performance for embedded system development, study how human programmers interact with these tools, and develop an AI-based software engineering workflow for building embedded systems. We develop an an end-to-end hardware-in-the-loop evaluation platform for verifying LLM generated programs using sensor actuator pairs. We compare all three models with N=450 experiments and find surprisingly that GPT-4 especially shows an exceptional level of cross-domain understanding and reasoning, in some cases generating fully correct programs from a single prompt. In N=50 trials, GPT-4 produces functional I2C interfaces 66% of the time. GPT-4 also produces register-level drivers, code for LoRa communication, and context-specific power optimizations for an nRF52 program resulting in over 740x current reduction to 12.2 uA. We also characterize the models' limitations to develop a generalizable workflow for using LLMs in embedded system development. We evaluate the workflow with 15 users including novice and expert programmers. We find that our workflow improves productivity for all users and increases the success rate for building a LoRa environmental sensor from 25% to 100%, including for users with zero hardware or C/C++ experience.
Abstract:We present a system for accurately predicting stable orientations for diverse rigid objects. We propose to overcome the critical issue of modelling multimodality in the space of rotations by using a conditional generative model to accurately classify contact surfaces. Our system is capable of operating from noisy and partially-observed pointcloud observations captured by real world depth cameras. Our method substantially outperforms the current state-of-the-art systems on a simulated stacking task requiring highly accurate rotations, and demonstrates strong sim2real zero-shot transfer results across a variety of unseen objects on a real world reorientation task. Project website: \url{https://richardrl.github.io/stable-reorientation/}
Abstract:Forecasting future world events is a challenging but valuable task. Forecasts of climate, geopolitical conflict, pandemics and economic indicators help shape policy and decision making. In these domains, the judgment of expert humans contributes to the best forecasts. Given advances in language modeling, can these forecasts be automated? To this end, we introduce Autocast, a dataset containing thousands of forecasting questions and an accompanying news corpus. Questions are taken from forecasting tournaments, ensuring high quality, real-world importance, and diversity. The news corpus is organized by date, allowing us to precisely simulate the conditions under which humans made past forecasts (avoiding leakage from the future). Motivated by the difficulty of forecasting numbers across orders of magnitude (e.g. global cases of COVID-19 in 2022), we also curate IntervalQA, a dataset of numerical questions and metrics for calibration. We test language models on our forecasting task and find that performance is far below a human expert baseline. However, performance improves with increased model size and incorporation of relevant information from the news corpus. In sum, Autocast poses a novel challenge for large language models and improved performance could bring large practical benefits.
Abstract:Learning robotic manipulation tasks using reinforcement learning with sparse rewards is currently impractical due to the outrageous data requirements. Many practical tasks require manipulation of multiple objects, and the complexity of such tasks increases with the number of objects. Learning from a curriculum of increasingly complex tasks appears to be a natural solution, but unfortunately, does not work for many scenarios. We hypothesize that the inability of the state-of-the-art algorithms to effectively utilize a task curriculum stems from the absence of inductive biases for transferring knowledge from simpler to complex tasks. We show that graph-based relational architectures overcome this limitation and enable learning of complex tasks when provided with a simple curriculum of tasks with increasing numbers of objects. We demonstrate the utility of our framework on a simulated block stacking task. Starting from scratch, our agent learns to stack six blocks into a tower. Despite using step-wise sparse rewards, our method is orders of magnitude more data-efficient and outperforms the existing state-of-the-art method that utilizes human demonstrations. Furthermore, the learned policy exhibits zero-shot generalization, successfully stacking blocks into taller towers and previously unseen configurations such as pyramids, without any further training.