Abstract:Federated Learning systems use a centralized server to aggregate model updates. This is a bandwidth and resource-heavy constraint and exposes the system to privacy concerns. We instead implement a peer to peer learning system in which nodes train on their own data and periodically perform a weighted average of their parameters with that of their peers according to a learned trust matrix. So far, we have created a model client framework and have been using this to run experiments on the proposed system using multiple virtual nodes which in reality exist on the same computer. We used this strategy as stated in Iteration 1 of our proposal to prove the concept of peer to peer learning with shared parameters. We now hope to run more experiments and build a more deployable real world system for the same.
Abstract:Forecasting future world events is a challenging but valuable task. Forecasts of climate, geopolitical conflict, pandemics and economic indicators help shape policy and decision making. In these domains, the judgment of expert humans contributes to the best forecasts. Given advances in language modeling, can these forecasts be automated? To this end, we introduce Autocast, a dataset containing thousands of forecasting questions and an accompanying news corpus. Questions are taken from forecasting tournaments, ensuring high quality, real-world importance, and diversity. The news corpus is organized by date, allowing us to precisely simulate the conditions under which humans made past forecasts (avoiding leakage from the future). Motivated by the difficulty of forecasting numbers across orders of magnitude (e.g. global cases of COVID-19 in 2022), we also curate IntervalQA, a dataset of numerical questions and metrics for calibration. We test language models on our forecasting task and find that performance is far below a human expert baseline. However, performance improves with increased model size and incorporation of relevant information from the news corpus. In sum, Autocast poses a novel challenge for large language models and improved performance could bring large practical benefits.