Abstract:Advancements in generative modeling are pushing the state-of-the-art in synthetic medical image generation. These synthetic images can serve as an effective data augmentation method to aid the development of more accurate machine learning models for medical image analysis. While the fidelity of these synthetic images has progressively increased, the diversity of these images is an understudied phenomenon. In this work, we propose the SDICE index, which is based on the characterization of similarity distributions induced by a contrastive encoder. Given a synthetic dataset and a reference dataset of real images, the SDICE index measures the distance between the similarity score distributions of original and synthetic images, where the similarity scores are estimated using a pre-trained contrastive encoder. This distance is then normalized using an exponential function to provide a consistent metric that can be easily compared across domains. Experiments conducted on the MIMIC-chest X-ray and ImageNet datasets demonstrate the effectiveness of SDICE index in assessing synthetic medical dataset diversity.
Abstract:In medical image classification, supervised learning is challenging due to the lack of labeled medical images. Contrary to the traditional \textit{modus operandi} of pre-training followed by fine-tuning, this work leverages the visual-textual alignment within Vision-Language models (\texttt{VLMs}) to facilitate the unsupervised learning. Specifically, we propose \underline{Med}ical \underline{Un}supervised \underline{A}daptation (\texttt{MedUnA}), constituting two-stage training: Adapter Pre-training, and Unsupervised Learning. In the first stage, we use descriptions generated by a Large Language Model (\texttt{LLM}) corresponding to class labels, which are passed through the text encoder \texttt{BioBERT}. The resulting text embeddings are then aligned with the class labels by training a lightweight \texttt{adapter}. We choose \texttt{\texttt{LLMs}} because of their capability to generate detailed, contextually relevant descriptions to obtain enhanced text embeddings. In the second stage, the trained \texttt{adapter} is integrated with the visual encoder of \texttt{MedCLIP}. This stage employs a contrastive entropy-based loss and prompt tuning to align visual embeddings. We incorporate self-entropy minimization into the overall training objective to ensure more confident embeddings, which are crucial for effective unsupervised learning and alignment. We evaluate the performance of \texttt{MedUnA} on three different kinds of data modalities - chest X-rays, eye fundus and skin lesion images. The results demonstrate significant accuracy gain on average compared to the baselines across different datasets, highlighting the efficacy of our approach.
Abstract:The conventional modus operandi for adapting pre-trained vision-language models (VLMs) during test-time involves tuning learnable prompts, ie, test-time prompt tuning. This paper introduces Test-Time Low-rank adaptation (TTL) as an alternative to prompt tuning for zero-shot generalization of large-scale VLMs. Taking inspiration from recent advancements in efficiently fine-tuning large language models, TTL offers a test-time parameter-efficient adaptation approach that updates the attention weights of the transformer encoder by maximizing prediction confidence. The self-supervised confidence maximization objective is specified using a weighted entropy loss that enforces consistency among predictions of augmented samples. TTL introduces only a small amount of trainable parameters for low-rank adapters in the model space while keeping the prompts and backbone frozen. Extensive experiments on a variety of natural distribution and cross-domain tasks show that TTL can outperform other techniques for test-time optimization of VLMs in strict zero-shot settings. Specifically, TTL outperforms test-time prompt tuning baselines with a significant improvement on average. Our code is available at at https://github.com/Razaimam45/TTL-Test-Time-Low-Rank-Adaptation.
Abstract:Existing vision-text contrastive learning models enhance representation transferability and support zero-shot prediction by matching paired image and caption embeddings while pushing unrelated pairs apart. However, astronomical image-label datasets are significantly smaller compared to general image and label datasets available from the internet. We introduce CosmoCLIP, an astronomical image-text contrastive learning framework precisely fine-tuned on the pre-trained CLIP model using SpaceNet and BLIP-based captions. SpaceNet, attained via FLARE, constitutes ~13k optimally distributed images, while BLIP acts as a rich knowledge extractor. The rich semantics derived from this SpaceNet and BLIP descriptions, when learned contrastively, enable CosmoCLIP to achieve superior generalization across various in-domain and out-of-domain tasks. Our results demonstrate that CosmoCLIP is a straightforward yet powerful framework, significantly outperforming CLIP in zero-shot classification and image-text retrieval tasks.
Abstract:The prevalence of AI-generated imagery has raised concerns about the authenticity of astronomical images, especially with advanced text-to-image models like Stable Diffusion producing highly realistic synthetic samples. Existing detection methods, primarily based on convolutional neural networks (CNNs) or spectral analysis, have limitations when used independently. We present AstroSpy, a hybrid model that integrates both spectral and image features to distinguish real from synthetic astronomical images. Trained on a unique dataset of real NASA images and AI-generated fakes (approximately 18k samples), AstroSpy utilizes a dual-pathway architecture to fuse spatial and spectral information. This approach enables AstroSpy to achieve superior performance in identifying authentic astronomical images. Extensive evaluations demonstrate AstroSpy's effectiveness and robustness, significantly outperforming baseline models in both in-domain and cross-domain tasks, highlighting its potential to combat misinformation in astronomy.
Abstract:The intersection of Astronomy and AI encounters significant challenges related to issues such as noisy backgrounds, lower resolution (LR), and the intricate process of filtering and archiving images from advanced telescopes like the James Webb. Given the dispersion of raw images in feature space, we have proposed a \textit{two-stage augmentation framework} entitled as \textbf{FLARE} based on \underline{f}eature \underline{l}earning and \underline{a}ugmented \underline{r}esolution \underline{e}nhancement. We first apply lower (LR) to higher resolution (HR) conversion followed by standard augmentations. Secondly, we integrate a diffusion approach to synthetically generate samples using class-concatenated prompts. By merging these two stages using weighted percentiles, we realign the feature space distribution, enabling a classification model to establish a distinct decision boundary and achieve superior generalization on various in-domain and out-of-domain tasks. We conducted experiments on several downstream cosmos datasets and on our optimally distributed \textbf{SpaceNet} dataset across 8-class fine-grained and 4-class macro classification tasks. FLARE attains the highest performance gain of 20.78\% for fine-grained tasks compared to similar baselines, while across different classification models, FLARE shows a consistent increment of an average of +15\%. This outcome underscores the effectiveness of the FLARE method in enhancing the precision of image classification, ultimately bolstering the reliability of astronomical research outcomes. % Our code and SpaceNet dataset will be released to the public soon. Our code and SpaceNet dataset is available at \href{https://github.com/Razaimam45/PlanetX_Dxb}{\textit{https://github.com/Razaimam45/PlanetX\_Dxb}}.
Abstract:In this study, we propose an automated framework for camel farm monitoring, introducing two key contributions: the Unified Auto-Annotation framework and the Fine-Tune Distillation framework. The Unified Auto-Annotation approach combines two models, GroundingDINO (GD), and Segment-Anything-Model (SAM), to automatically annotate raw datasets extracted from surveillance videos. Building upon this foundation, the Fine-Tune Distillation framework conducts fine-tuning of student models using the auto-annotated dataset. This process involves transferring knowledge from a large teacher model to a student model, resembling a variant of Knowledge Distillation. The Fine-Tune Distillation framework aims to be adaptable to specific use cases, enabling the transfer of knowledge from the large models to the small models, making it suitable for domain-specific applications. By leveraging our raw dataset collected from Al-Marmoom Camel Farm in Dubai, UAE, and a pre-trained teacher model, GroundingDINO, the Fine-Tune Distillation framework produces a lightweight deployable model, YOLOv8. This framework demonstrates high performance and computational efficiency, facilitating efficient real-time object detection. Our code is available at \href{https://github.com/Razaimam45/Fine-Tune-Distillation}{https://github.com/Razaimam45/Fine-Tune-Distillation}
Abstract:As virtual environments continue to advance, the demand for immersive and emotionally engaging experiences has grown. Addressing this demand, we introduce Emotion enabled Virtual avatar mapping using Optimized KnowledgE distillation (EVOKE), a lightweight emotion recognition framework designed for the seamless integration of emotion recognition into 3D avatars within virtual environments. Our approach leverages knowledge distillation involving multi-label classification on the publicly available DEAP dataset, which covers valence, arousal, and dominance as primary emotional classes. Remarkably, our distilled model, a CNN with only two convolutional layers and 18 times fewer parameters than the teacher model, achieves competitive results, boasting an accuracy of 87% while demanding far less computational resources. This equilibrium between performance and deployability positions our framework as an ideal choice for virtual environment systems. Furthermore, the multi-label classification outcomes are utilized to map emotions onto custom-designed 3D avatars.
Abstract:Deep Learning methods have recently seen increased adoption in medical imaging applications. However, elevated vulnerabilities have been explored in recent Deep Learning solutions, which can hinder future adoption. Particularly, the vulnerability of Vision Transformer (ViT) to adversarial, privacy, and confidentiality attacks raise serious concerns about their reliability in medical settings. This work aims to enhance the robustness of self-ensembling ViTs for the tuberculosis chest x-ray classification task. We propose Self-Ensembling ViT with defensive Distillation and Adversarial training (SEDA). SEDA utilizes efficient CNN blocks to learn spatial features with various levels of abstraction from feature representations extracted from intermediate ViT blocks, that are largely unaffected by adversarial perturbations. Furthermore, SEDA leverages adversarial training in combination with defensive distillation for improved robustness against adversaries. Training using adversarial examples leads to better model generalizability and improves its ability to handle perturbations. Distillation using soft probabilities introduces uncertainty and variation into the output probabilities, making it more difficult for adversarial and privacy attacks. Extensive experiments performed with the proposed architecture and training paradigm on publicly available Tuberculosis x-ray dataset shows SOTA efficacy of SEDA compared to SEViT in terms of computational efficiency with 70x times lighter framework and enhanced robustness of +9%.
Abstract:Deep learning has emerged as a prominent field in recent literature, showcasing the introduction of models that utilize transfer learning to achieve remarkable accuracies in the classification of brain tumor MRI images. However, the majority of these proposals primarily focus on balanced datasets, neglecting the inherent data imbalance present in real-world scenarios. Consequently, there is a pressing need for approaches that not only address the data imbalance but also prioritize precise classification of brain cancer. In this work, we present a novel deep learning-based approach, called Transfer Learning-CNN, for brain tumor classification using MRI data. The proposed model leverages the predictive capabilities of existing publicly available models by utilizing their pre-trained weights and transferring those weights to the CNN. By leveraging a publicly available Brain MRI dataset, the experiment evaluated various transfer learning models for classifying different tumor types, including meningioma, glioma, and pituitary tumors. We investigate the impact of different loss functions, including focal loss, and oversampling methods, such as SMOTE and ADASYN, in addressing the data imbalance issue. Notably, the proposed strategy, which combines VGG-16 and CNN, achieved an impressive accuracy rate of 96%, surpassing alternative approaches significantly.