As virtual environments continue to advance, the demand for immersive and emotionally engaging experiences has grown. Addressing this demand, we introduce Emotion enabled Virtual avatar mapping using Optimized KnowledgE distillation (EVOKE), a lightweight emotion recognition framework designed for the seamless integration of emotion recognition into 3D avatars within virtual environments. Our approach leverages knowledge distillation involving multi-label classification on the publicly available DEAP dataset, which covers valence, arousal, and dominance as primary emotional classes. Remarkably, our distilled model, a CNN with only two convolutional layers and 18 times fewer parameters than the teacher model, achieves competitive results, boasting an accuracy of 87% while demanding far less computational resources. This equilibrium between performance and deployability positions our framework as an ideal choice for virtual environment systems. Furthermore, the multi-label classification outcomes are utilized to map emotions onto custom-designed 3D avatars.