Abstract:Multi-class semantic segmentation remains a cornerstone challenge in computer vision. Yet, dataset creation remains excessively demanding in time and effort, especially for specialized domains. Active Learning (AL) mitigates this challenge by selecting data points for annotation strategically. However, existing patch-based AL methods often overlook boundary pixels critical information, essential for accurate segmentation. We present OREAL, a novel patch-based AL method designed for multi-class semantic segmentation. OREAL enhances boundary detection by employing maximum aggregation of pixel-wise uncertainty scores. Additionally, we introduce one-vs-rest entropy, a novel uncertainty score function that computes class-wise uncertainties while achieving implicit class balancing during dataset creation. Comprehensive experiments across diverse datasets and model architectures validate our hypothesis.
Abstract:The reliability of supervised classifiers is severely hampered by their limitations in dealing with unexpected inputs, leading to great interest in out-of-distribution (OOD) detection. Recently, OOD detectors trained on synthetic outliers, especially those generated by large diffusion models, have shown promising results in defining robust OOD decision boundaries. Building on this progress, we present NCIS, which enhances the quality of synthetic outliers by operating directly in the diffusion's model embedding space rather than combining disjoint models as in previous work and by modeling class-conditional manifolds with a conditional volume-preserving network for more expressive characterization of the training distribution. We demonstrate that these improvements yield new state-of-the-art OOD detection results on standard ImageNet100 and CIFAR100 benchmarks and provide insights into the importance of data pre-processing and other key design choices. We make our code available at \url{https://github.com/LarsDoorenbos/NCIS}.
Abstract:3D scene reconstruction from stereo endoscopic video data is crucial for advancing surgical interventions. In this work, we present an online framework for online, dense 3D scene reconstruction and tracking, aimed at enhancing surgical scene understanding and assisting interventions. Our method dynamically extends a canonical scene representation using Gaussian splatting, while modeling tissue deformations through a sparse set of control points. We introduce an efficient online fitting algorithm that optimizes the scene parameters, enabling consistent tracking and accurate reconstruction. Through experiments on the StereoMIS dataset, we demonstrate the effectiveness of our approach, outperforming state-of-the-art tracking methods and achieving comparable performance to offline reconstruction techniques. Our work enables various downstream applications thus contributing to advancing the capabilities of surgical assistance systems.
Abstract:With growing interest in recent years, medical visual question answering (Med-VQA) has rapidly evolved, with multimodal large language models (MLLMs) emerging as an alternative to classical model architectures. Specifically, their ability to add visual information to the input of pre-trained LLMs brings new capabilities for image interpretation. However, simple visual errors cast doubt on the actual visual understanding abilities of these models. To address this, region-based questions have been proposed as a means to assess and enhance actual visual understanding through compositional evaluation. To combine these two perspectives, this paper introduces targeted visual prompting to equip MLLMs with region-based questioning capabilities. By presenting the model with both the isolated region and the region in its context in a customized visual prompt, we show the effectiveness of our method across multiple datasets while comparing it to several baseline models. Our code and data are available at https://github.com/sergiotasconmorales/locvqallm.
Abstract:The inability of deep learning models to handle data drawn from unseen distributions has sparked much interest in unsupervised out-of-distribution (U-OOD) detection, as it is crucial for reliable deep learning models. Despite considerable attention, theoretically-motivated approaches are few and far between, with most methods building on top of some form of heuristic. Recently, U-OOD was formalized in the context of data invariants, allowing a clearer understanding of how to characterize U-OOD, and methods leveraging affine invariants have attained state-of-the-art results on large-scale benchmarks. Nevertheless, the restriction to affine invariants hinders the expressiveness of the approach. In this work, we broaden the affine invariants formulation to a more general case and propose a framework consisting of a normalizing flow-like architecture capable of learning non-linear invariants. Our novel approach achieves state-of-the-art results on an extensive U-OOD benchmark, and we demonstrate its further applicability to tabular data. Finally, we show our method has the same desirable properties as those based on affine invariants.
Abstract:Modern spectroscopic surveys can only target a small fraction of the vast amount of photometrically cataloged sources in wide-field surveys. Here, we report the development of a generative AI method capable of predicting optical galaxy spectra from photometric broad-band images alone. This method draws from the latest advances in diffusion models in combination with contrastive networks. We pass multi-band galaxy images into the architecture to obtain optical spectra. From these, robust values for galaxy properties can be derived with any methods in the spectroscopic toolbox, such as standard population synthesis techniques and Lick indices. When trained and tested on 64x64-pixel images from the Sloan Digital Sky Survey, the global bimodality of star-forming and quiescent galaxies in photometric space is recovered, as well as a mass-metallicity relation of star-forming galaxies. The comparison between the observed and the artificially created spectra shows good agreement in overall metallicity, age, Dn4000, stellar velocity dispersion, and E(B-V) values. Photometric redshift estimates of our generative algorithm can compete with other current, specialized deep-learning techniques. Moreover, this work is the first attempt in the literature to infer velocity dispersion from photometric images. Additionally, we can predict the presence of an active galactic nucleus up to an accuracy of 82%. With our method, scientifically interesting galaxy properties, normally requiring spectroscopic inputs, can be obtained in future data sets from large-scale photometric surveys alone. The spectra prediction via AI can further assist in creating realistic mock catalogs.
Abstract:Deep learning models excel when the data distribution during training aligns with testing data. Yet, their performance diminishes when faced with out-of-distribution (OOD) samples, leading to great interest in the field of OOD detection. Current approaches typically assume that OOD samples originate from an unconcentrated distribution complementary to the training distribution. While this assumption is appropriate in the traditional unsupervised OOD (U-OOD) setting, it proves inadequate when considering the place of deployment of the underlying deep learning model. To better reflect this real-world scenario, we introduce the novel setting of continual U-OOD detection. To tackle this new setting, we propose a method that starts from a U-OOD detector, which is agnostic to the OOD distribution, and slowly updates during deployment to account for the actual OOD distribution. Our method uses a new U-OOD scoring function that combines the Mahalanobis distance with a nearest-neighbor approach. Furthermore, we design a confidence-scaled few-shot OOD detector that outperforms previous methods. We show our method greatly improves upon strong baselines from related fields.
Abstract:This work explores the effectiveness of masked image modelling for learning representations of retinal OCT images. To this end, we leverage Masked Autoencoders (MAE), a simple and scalable method for self-supervised learning, to obtain a powerful and general representation for OCT images by training on 700K OCT images from 41K patients collected under real world clinical settings. We also provide the first extensive evaluation for a model of OCT on a challenging battery of 6 downstream tasks. Our model achieves strong performance when fully finetuned but can also serve as a versatile frozen feature extractor for many tasks using lightweight adapters. Furthermore, we propose an extension of the MAE pretraining to fuse OCT with an auxiliary modality, namely, IR fundus images and learn a joint model for both. We demonstrate our approach improves performance on a multimodal downstream application. Our experiments utilize most publicly available OCT datasets, thus enabling future comparisons. Our code and model weights are publicly available https://github.com/TheoPis/MIM_OCT.
Abstract:In recent years, the landscape of computer-assisted interventions and post-operative surgical video analysis has been dramatically reshaped by deep-learning techniques, resulting in significant advancements in surgeons' skills, operation room management, and overall surgical outcomes. However, the progression of deep-learning-powered surgical technologies is profoundly reliant on large-scale datasets and annotations. Particularly, surgical scene understanding and phase recognition stand as pivotal pillars within the realm of computer-assisted surgery and post-operative assessment of cataract surgery videos. In this context, we present the largest cataract surgery video dataset that addresses diverse requisites for constructing computerized surgical workflow analysis and detecting post-operative irregularities in cataract surgery. We validate the quality of annotations by benchmarking the performance of several state-of-the-art neural network architectures for phase recognition and surgical scene segmentation. Besides, we initiate the research on domain adaptation for instrument segmentation in cataract surgery by evaluating cross-domain instrument segmentation performance in cataract surgery videos. The dataset and annotations will be publicly available upon acceptance of the paper.
Abstract:A critical yet unpredictable complication following cataract surgery is intraocular lens dislocation. Postoperative stability is imperative, as even a tiny decentration of multifocal lenses or inadequate alignment of the torus in toric lenses due to postoperative rotation can lead to a significant drop in visual acuity. Investigating possible intraoperative indicators that can predict post-surgical instabilities of intraocular lenses can help prevent this complication. In this paper, we develop and evaluate the first fully-automatic framework for the computation of lens unfolding delay, rotation, and instability during surgery. Adopting a combination of three types of CNNs, namely recurrent, region-based, and pixel-based, the proposed framework is employed to assess the possibility of predicting post-operative lens dislocation during cataract surgery. This is achieved via performing a large-scale study on the statistical differences between the behavior of different brands of intraocular lenses and aligning the results with expert surgeons' hypotheses and observations about the lenses. We exploit a large-scale dataset of cataract surgery videos featuring four intraocular lens brands. Experimental results confirm the reliability of the proposed framework in evaluating the lens' statistics during the surgery. The Pearson correlation and t-test results reveal significant correlations between lens unfolding delay and lens rotation and significant differences between the intra-operative rotations stability of four groups of lenses. These results suggest that the proposed framework can help surgeons select the lenses based on the patient's eye conditions and predict post-surgical lens dislocation.