Abstract:We develop variational search distributions (VSD), a method for finding discrete, combinatorial designs of a rare desired class in a batch sequential manner with a fixed experimental budget. We formalize the requirements and desiderata for this problem and formulate a solution via variational inference that fulfill these. In particular, VSD uses off-the-shelf gradient based optimization routines, and can take advantage of scalable predictive models. We show that VSD can outperform existing baseline methods on a set of real sequence-design problems in various biological systems.
Abstract:In large-scale regression problems, random Fourier features (RFFs) have significantly enhanced the computational scalability and flexibility of Gaussian processes (GPs) by defining kernels through their spectral density, from which a finite set of Monte Carlo samples can be used to form an approximate low-rank GP. However, the efficacy of RFFs in kernel approximation and Bayesian kernel learning depends on the ability to tractably sample the kernel spectral measure and the quality of the generated samples. We introduce Stein random features (SRF), leveraging Stein variational gradient descent, which can be used to both generate high-quality RFF samples of known spectral densities as well as flexibly and efficiently approximate traditionally non-analytical spectral measure posteriors. SRFs require only the evaluation of log-probability gradients to perform both kernel approximation and Bayesian kernel learning that results in superior performance over traditional approaches. We empirically validate the effectiveness of SRFs by comparing them to baselines on kernel approximation and well-known GP regression problems.
Abstract:The process of calibrating computer models of natural phenomena is essential for applications in the physical sciences, where plenty of domain knowledge can be embedded into simulations and then calibrated against real observations. Current machine learning approaches, however, mostly rely on rerunning simulations over a fixed set of designs available in the observed data, potentially neglecting informative correlations across the design space and requiring a large amount of simulations. Instead, we consider the calibration process from the perspective of Bayesian adaptive experimental design and propose a data-efficient algorithm to run maximally informative simulations within a batch-sequential process. At each round, the algorithm jointly estimates the parameters of the posterior distribution and optimal designs by maximising a variational lower bound of the expected information gain. The simulator is modelled as a sample from a Gaussian process, which allows us to correlate simulations and observed data with the unknown calibration parameters. We show the benefits of our method when compared to related approaches across synthetic and real-data problems.
Abstract:Motion planning can be cast as a trajectory optimisation problem where a cost is minimised as a function of the trajectory being generated. In complex environments with several obstacles and complicated geometry, this optimisation problem is usually difficult to solve and prone to local minima. However, recent advancements in computing hardware allow for parallel trajectory optimisation where multiple solutions are obtained simultaneously, each initialised from a different starting point. Unfortunately, without a strategy preventing two solutions to collapse on each other, naive parallel optimisation can suffer from mode collapse diminishing the efficiency of the approach and the likelihood of finding a global solution. In this paper we leverage on recent advances in the theory of rough paths to devise an algorithm for parallel trajectory optimisation that promotes diversity over the range of solutions, therefore avoiding mode collapses and achieving better global properties. Our approach builds on path signatures and Hilbert space representations of trajectories, and connects parallel variational inference for trajectory estimation with diversity promoting kernels. We empirically demonstrate that this strategy achieves lower average costs than competing alternatives on a range of problems, from 2D navigation to robotic manipulators operating in cluttered environments.
Abstract:Bayesian optimisation (BO) algorithms have shown remarkable success in applications involving expensive black-box functions. Traditionally BO has been set as a sequential decision-making process which estimates the utility of query points via an acquisition function and a prior over functions, such as a Gaussian process. Recently, however, a reformulation of BO via density-ratio estimation (BORE) allowed reinterpreting the acquisition function as a probabilistic binary classifier, removing the need for an explicit prior over functions and increasing scalability. In this paper, we present a theoretical analysis of BORE's regret and an extension of the algorithm with improved uncertainty estimates. We also show that BORE can be naturally extended to a batch optimisation setting by recasting the problem as approximate Bayesian inference. The resulting algorithm comes equipped with theoretical performance guarantees and is assessed against other batch BO baselines in a series of experiments.
Abstract:Stochastic model predictive control has been a successful and robust control framework for many robotics tasks where the system dynamics model is slightly inaccurate or in the presence of environment disturbances. Despite the successes, it is still unclear how to best adjust control parameters to the current task in the presence of model parameter uncertainty and heteroscedastic noise. In this paper, we propose an adaptive MPC variant that automatically estimates control and model parameters by leveraging ideas from Bayesian optimisation (BO) and the classical expected improvement acquisition function. We leverage recent results showing that BO can be reformulated via density ratio estimation, which can be efficiently approximated by simply learning a classifier. This is then integrated into a model predictive path integral control framework yielding robust controllers for a variety of challenging robotics tasks. We demonstrate the approach on classical control problems under model uncertainty and robotics manipulation tasks.
Abstract:We propose an adaptive optimisation approach for tuning stochastic model predictive control (MPC) hyper-parameters while jointly estimating probability distributions of the transition model parameters based on performance rewards. In particular, we develop a Bayesian optimisation (BO) algorithm with a heteroscedastic noise model to deal with varying noise across the MPC hyper-parameter and dynamics model parameter spaces. Typical homoscedastic noise models are unrealistic for tuning MPC since stochastic controllers are inherently noisy, and the level of noise is affected by their hyper-parameter settings. We evaluate the proposed optimisation algorithm in simulated control and robotics tasks where we jointly infer control and dynamics parameters. Experimental results demonstrate that our approach leads to higher cumulative rewards and more stable controllers.
Abstract:The matrix normal model, the family of Gaussian matrix-variate distributions whose covariance matrix is the Kronecker product of two lower dimensional factors, is frequently used to model matrix-variate data. The tensor normal model generalizes this family to Kronecker products of three or more factors. We study the estimation of the Kronecker factors of the covariance matrix in the matrix and tensor models. We show nonasymptotic bounds for the error achieved by the maximum likelihood estimator (MLE) in several natural metrics. In contrast to existing bounds, our results do not rely on the factors being well-conditioned or sparse. For the matrix normal model, all our bounds are minimax optimal up to logarithmic factors, and for the tensor normal model our bound for the largest factor and overall covariance matrix are minimax optimal up to constant factors provided there are enough samples for any estimator to obtain constant Frobenius error. In the same regimes as our sample complexity bounds, we show that an iterative procedure to compute the MLE known as the flip-flop algorithm converges linearly with high probability. Our main tool is geodesic strong convexity in the geometry on positive-definite matrices induced by the Fisher information metric. This strong convexity is determined by the expansion of certain random quantum channels. We also provide numerical evidence that combining the flip-flop algorithm with a simple shrinkage estimator can improve performance in the undersampled regime.
Abstract:Model predictive control (MPC) schemes have a proven track record for delivering aggressive and robust performance in many challenging control tasks, coping with nonlinear system dynamics, constraints, and observational noise. Despite their success, these methods often rely on simple control distributions, which can limit their performance in highly uncertain and complex environments. MPC frameworks must be able to accommodate changing distributions over system parameters, based on the most recent measurements. In this paper, we devise an implicit variational inference algorithm able to estimate distributions over model parameters and control inputs on-the-fly. The method incorporates Stein Variational gradient descent to approximate the target distributions as a collection of particles, and performs updates based on a Bayesian formulation. This enables the approximation of complex multi-modal posterior distributions, typically occurring in challenging and realistic robot navigation tasks. We demonstrate our approach on both simulated and real-world experiments requiring real-time execution in the face of dynamically changing environments.
Abstract:We consider the regret minimization problem in reinforcement learning (RL) in the episodic setting. In many real-world RL environments, the state and action spaces are continuous or very large. Existing approaches establish regret guarantees by either a low-dimensional representation of the stochastic transition model or an approximation of the $Q$-functions. However, the understanding of function approximation schemes for state-value functions largely remains missing. In this paper, we propose an online model-based RL algorithm, namely the CME-RL, that learns representations of transition distributions as embeddings in a reproducing kernel Hilbert space while carefully balancing the exploitation-exploration tradeoff. We demonstrate the efficiency of our algorithm by proving a frequentist (worst-case) regret bound that is of order $\tilde{O}\big(H\gamma_N\sqrt{N}\big)$, where $H$ is the episode length, $N$ is the total number of time steps and $\gamma_N$ is an information theoretic quantity relating the effective dimension of the state-action feature space. Our method bypasses the need for estimating transition probabilities and applies to any domain on which kernels can be defined. It also brings new insights into the general theory of kernel methods for approximate inference and RL regret minimization.