Abstract:We propose causal preference elicitation, a Bayesian framework for expert-in-the-loop causal discovery that actively queries local edge relations to concentrate a posterior over directed acyclic graphs (DAGs). From any black-box observational posterior, we model noisy expert judgments with a three-way likelihood over edge existence and direction. Posterior inference uses a flexible particle approximation, and queries are selected by an efficient expected information gain criterion on the expert's categorical response. Experiments on synthetic graphs, protein signaling data, and a human gene perturbation benchmark show faster posterior concentration and improved recovery of directed effects under tight query budgets.




Abstract:We develop variational search distributions (VSD), a method for finding discrete, combinatorial designs of a rare desired class in a batch sequential manner with a fixed experimental budget. We formalize the requirements and desiderata for this problem and formulate a solution via variational inference that fulfill these. In particular, VSD uses off-the-shelf gradient based optimization routines, and can take advantage of scalable predictive models. We show that VSD can outperform existing baseline methods on a set of real sequence-design problems in various biological systems.