Abstract:Soft pneumatic fingers are of great research interest. However, their significant potential is limited as most of them can generate only one motion, mostly bending. The conventional design of soft fingers does not allow them to switch to another motion mode. In this paper, we developed a novel multi-modal and single-actuated soft finger where its motion mode is switched by changing the finger's temperature. Our soft finger is capable of switching between three distinctive motion modes: bending, twisting, and extension-in approximately five seconds. We carried out a detailed experimental study of the soft finger and evaluated its repeatability and range of motion. It exhibited repeatability of around one millimeter and a fifty percent larger range of motion than a standard bending actuator. We developed an analytical model for a fiber-reinforced soft actuator for twisting motion. This helped us relate the input pressure to the output twist radius of the twisting motion. This model was validated by experimental verification. Further, a soft robotic gripper with multiple grasp modes was developed using three actuators. This gripper can adapt to and grasp objects of a large range of size, shape, and stiffness. We showcased its grasping capabilities by successfully grasping a small berry, a large roll, and a delicate tofu cube.
Abstract:Point clouds acquired in constrained and challenging real-world settings are incomplete, non-uniformly sparse, or both. These obstacles present acute challenges for a vital task - point cloud completion. Using tools from Algebraic Topology and Persistent Homology ($\mathcal{PH}$), we demonstrate that current benchmark synthetic point clouds lack rich topological features that are important constituents of point clouds captured in realistic settings. To facilitate research in this direction, we contribute the first real-world industrial point cloud dataset for point cloud completion, RealPC - a diverse set of rich and varied point clouds, consisting of $\sim$ 40,000 pairs across 21 categories of industrial structures in railway establishments. Our benchmark results on several strong baselines reveal a striking observation - the existing methods are tailored for synthetic datasets and fail miserably in real-world settings. Building on our observation that RealPC consists of several 0 and 1-dimensional $\mathcal{PH}$-based topological features, we demonstrate the potential of integrating Homology-based topological priors into existing works. More specifically, we present how 0-dimensional $\mathcal{PH}$ priors, which extract the global topology of a complete shape in the form of a 3-D skeleton, can assist a model in generating topologically-consistent complete shapes.
Abstract:PhisNet is a cutting-edge web application designed to detect phishing websites using advanced machine learning. It aims to help individuals and organizations identify and prevent phishing attacks through a robust AI framework. PhisNet utilizes Python to apply various machine learning algorithms and feature extraction techniques for high accuracy and efficiency. The project starts by collecting and preprocessing a comprehensive dataset of URLs, comprising both phishing and legitimate sites. Key features such as URL length, special characters, and domain age are extracted to effectively train the model. Multiple machine learning algorithms, including logistic regression, decision trees, and neural networks, are evaluated to determine the best performance in phishing detection. The model is finely tuned to optimize metrics like accuracy, precision, recall, and the F1 score, ensuring reliable detection of both common and sophisticated phishing tactics. PhisNet's web application is developed using React.js, which allows for client-side rendering and smooth integration with backend services, creating a responsive and user-friendly interface. Users can input URLs and receive immediate predictions with confidence scores, thanks to a robust backend infrastructure that processes data and provides real-time results. The model is deployed using Google Colab and AWS EC2 for their computational power and scalability, ensuring the application remains accessible and functional under varying loads. In summary, PhisNet represents a significant advancement in cybersecurity, showcasing the effective use of machine learning and web development technologies to enhance user security. It empowers users to prevent phishing attacks and highlights AI's potential in transforming cybersecurity.
Abstract:In the realm of financial analytics, leveraging unstructured data, such as earnings conference calls (ECCs), to forecast stock performance is a critical challenge that has attracted both academics and investors. While previous studies have used deep learning-based models to obtain a general view of ECCs, they often fail to capture detailed, complex information. Our study introduces a novel framework: \textbf{ECC Analyzer}, combining Large Language Models (LLMs) and multi-modal techniques to extract richer, more predictive insights. The model begins by summarizing the transcript's structure and analyzing the speakers' mode and confidence level by detecting variations in tone and pitch for audio. This analysis helps investors form an overview perception of the ECCs. Moreover, this model uses the Retrieval-Augmented Generation (RAG) based methods to meticulously extract the focuses that have a significant impact on stock performance from an expert's perspective, providing a more targeted analysis. The model goes a step further by enriching these extracted focuses with additional layers of analysis, such as sentiment and audio segment features. By integrating these insights, the ECC Analyzer performs multi-task predictions of stock performance, including volatility, value-at-risk (VaR), and return for different intervals. The results show that our model outperforms traditional analytic benchmarks, confirming the effectiveness of using advanced LLM techniques in financial analytics.
Abstract:The integration of Artificial Intelligence (AI) techniques, particularly large language models (LLMs), in finance has garnered increasing academic attention. Despite progress, existing studies predominantly focus on tasks like financial text summarization, question-answering (Q$\&$A), and stock movement prediction (binary classification), with a notable gap in the application of LLMs for financial risk prediction. Addressing this gap, in this paper, we introduce \textbf{RiskLabs}, a novel framework that leverages LLMs to analyze and predict financial risks. RiskLabs uniquely combines different types of financial data, including textual and vocal information from Earnings Conference Calls (ECCs), market-related time series data, and contextual news data surrounding ECC release dates. Our approach involves a multi-stage process: initially extracting and analyzing ECC data using LLMs, followed by gathering and processing time-series data before the ECC dates to model and understand risk over different timeframes. Using multimodal fusion techniques, RiskLabs amalgamates these varied data features for comprehensive multi-task financial risk prediction. Empirical experiment results demonstrate RiskLab's effectiveness in forecasting both volatility and variance in financial markets. Through comparative experiments, we demonstrate how different data sources contribute to financial risk assessment and discuss the critical role of LLMs in this context. Our findings not only contribute to the AI in finance application but also open new avenues for applying LLMs in financial risk assessment.
Abstract:Sparse LiDAR point clouds cause severe loss of detail of static structures and reduce the density of static points available for navigation. Reduced density can be detrimental to navigation under several scenarios. We observe that despite high sparsity, in most cases, the global topology of LiDAR outlining the static structures can be inferred. We utilize this property to obtain a backbone skeleton of a static LiDAR scan in the form of a single connected component that is a proxy to its global topology. We utilize the backbone to augment new points along static structures to overcome sparsity. Newly introduced points could correspond to existing static structures or to static points that were earlier obstructed by dynamic objects. To the best of our knowledge, we are the first to use this strategy for sparse LiDAR point clouds. Existing solutions close to our approach fail to identify and preserve the global static LiDAR topology and generate sub-optimal points. We propose GLiDR, a Graph Generative network that is topologically regularized using 0-dimensional Persistent Homology (PH) constraints. This enables GLiDR to introduce newer static points along a topologically consistent global static LiDAR backbone. GLiDR generates precise static points using 32x sparser dynamic scans and performs better than the baselines across three datasets. The newly introduced static points allow GLiDR to outperform LiDAR-based navigation using SLAM in several settings. GLiDR generates a valuable byproduct - an accurate binary segmentation mask of static and dynamic objects that is helpful for navigation planning and safety in constrained environments.
Abstract:We investigate a new paradigm that uses differentiable SLAM architectures in a self-supervised manner to train end-to-end deep learning models in various LiDAR based applications. To the best of our knowledge there does not exist any work that leverages SLAM as a training signal for deep learning based models. We explore new ways to improve the efficiency, robustness, and adaptability of LiDAR systems with deep learning techniques. We focus on the potential benefits of differentiable SLAM architectures for improving performance of deep learning tasks such as classification, regression as well as SLAM. Our experimental results demonstrate a non-trivial increase in the performance of two deep learning applications - Ground Level Estimation and Dynamic to Static LiDAR Translation, when used with differentiable SLAM architectures. Overall, our findings provide important insights that enhance the performance of LiDAR based navigation systems. We demonstrate that this new paradigm of using SLAM Loss signal while training LiDAR based models can be easily adopted by the community.
Abstract:Accurate detection of movable and moving objects in LiDAR is of vital importance for navigation. Most existing works focus on extracting and removing moving objects during navigation. Movable objects like pedestrians, parked vehicles, etc. although static may move in the future. This leads to erroneous navigation and accidents. In such cases, it becomes necessary to detect potentially movable objects. To this end, we present a learning-based approach that segments movable and moving objects by generating static parts of scenes that are otherwise occluded. Our model performs superior to existing baselines on static LiDAR reconstructions using 3 datasets including a challenging sparse industrial dataset. We achieve this without the assistance of any segmentation labels because such labels might not always be available for less popular yet important settings like industrial environments. The non-movable static parts of the scene generated by our model are of vital importance for downstream navigation for SLAM. The movable objects detected by our model can be fed to a downstream 3D detector for aiding navigation. Though we do not use segmentation, we evaluate our method against navigation baselines that use it to remove dynamic objects for SLAM. Through extensive experiments on several datasets, we showcase that our model surpasses these baselines on navigation.
Abstract:Optical coherence tomography (OCT) is a medical imaging modality that allows us to probe deeper substructures of skin. The state-of-the-art wound care prediction and monitoring methods are based on visual evaluation and focus on surface information. However, research studies have shown that sub-surface information of the wound is critical for understanding the wound healing progression. This work demonstrated the use of OCT as an effective imaging tool for objective and non-invasive assessments of wound severity, the potential for healing, and healing progress by measuring the optical characteristics of skin components. We have demonstrated the efficacy of OCT in studying wound healing progress in vivo small animal models. Automated analysis of OCT datasets poses multiple challenges, such as limitations in the training dataset size, variation in data distribution induced by uncertainties in sample quality and experiment conditions. We have employed a U-Net-based model for the segmentation of skin layers based on OCT images and to study epithelial and regenerated tissue thickness wound closure dynamics and thus quantify the progression of wound healing. In the experimental evaluation of the OCT skin image datasets, we achieved the objective of skin layer segmentation with an average intersection over union (IOU) of 0.9234. The results have been corroborated using gold-standard histology images and co-validated using inputs from pathologists. Clinical Relevance: To monitor wound healing progression without disrupting the healing procedure by superficial, noninvasive means via the identification of pixel characteristics of individual layers.
Abstract:We introduce a method for explaining the results of various linear and hierarchical multi-criteria decision-making (MCDM) techniques such as WSM and AHP. The two key ideas are (A) to maintain a fine-grained representation of the values manipulated by these techniques and (B) to derive explanations from these representations through merging, filtering, and aggregating operations. An explanation in our model presents a high-level comparison of two alternatives in an MCDM problem, presumably an optimal and a non-optimal one, illuminating why one alternative was preferred over the other one. We show the usefulness of our techniques by generating explanations for two well-known examples from the MCDM literature. Finally, we show their efficacy by performing computational experiments.