Abstract:The production of multiple Higgs bosons at the CERN LHC provides a direct way to measure the trilinear and quartic Higgs self-interaction strengths as well as potential access to beyond the standard model effects that can enhance production at large transverse momentum $p_{\mathrm{T}}$. The largest event fraction arises from the fully hadronic final state in which every Higgs boson decays to a bottom quark-antiquark pair ($b\bar{b}$). This introduces a combinatorial challenge known as the \emph{jet assignment problem}: assigning jets to sets representing Higgs boson candidates. Symmetry-preserving attention networks (SPA-Nets) have been been developed to address this challenge. However, the complexity of jet assignment increases when simultaneously considering both $H\rightarrow b\bar{b}$ reconstruction possibilities, i.e., two "resolved" small-radius jets each containing a shower initiated by a $b$-quark or one "boosted" large-radius jet containing a merged shower initiated by a $b\bar{b}$ pair. The latter improves the reconstruction efficiency at high $p_{\mathrm{T}}$. In this work, we introduce a generalization to the SPA-Net approach to simultaneously consider both boosted and resolved reconstruction possibilities and unambiguously interpret an event as "fully resolved'', "fully boosted", or in between. We report the performance of baseline methods, the original SPA-Net approach, and our generalized version on nonresonant $HH$ and $HHH$ production at the LHC. Considering both boosted and resolved topologies, our SPA-Net approach increases the Higgs boson reconstruction purity by 57--62\% and the efficiency by 23--38\% compared to the baseline method depending on the final state.
Abstract:Recent advancements in Model-Based Reinforcement Learning (MBRL) have made it a powerful tool for visual control tasks. Despite improved data efficiency, it remains challenging to train MBRL agents with generalizable perception. Training in the presence of visual distractions is particularly difficult due to the high variation they introduce to representation learning. Building on DREAMER, a popular MBRL method, we propose a simple yet effective auxiliary task to facilitate representation learning in distracting environments. Under the assumption that task-relevant components of image observations are straightforward to identify with prior knowledge in a given task, we use a segmentation mask on image observations to only reconstruct task-relevant components. In doing so, we greatly reduce the complexity of representation learning by removing the need to encode task-irrelevant objects in the latent representation. Our method, Segmentation Dreamer (SD), can be used either with ground-truth masks easily accessible in simulation or by leveraging potentially imperfect segmentation foundation models. The latter is further improved by selectively applying the reconstruction loss to avoid providing misleading learning signals due to mask prediction errors. In modified DeepMind Control suite (DMC) and Meta-World tasks with added visual distractions, SD achieves significantly better sample efficiency and greater final performance than prior work. We find that SD is especially helpful in sparse reward tasks otherwise unsolvable by prior work, enabling the training of visually robust agents without the need for extensive reward engineering.
Abstract:While Deep Reinforcement Learning (DRL) has achieved remarkable success across various domains, it remains vulnerable to occasional catastrophic failures without additional safeguards. One effective solution to prevent these failures is to use a shield that validates and adjusts the agent's actions to ensure compliance with a provided set of safety specifications. For real-life robot domains, it is desirable to be able to define such safety specifications over continuous state and action spaces to accurately account for system dynamics and calculate new safe actions that minimally alter the agent's output. In this paper, we propose the first shielding approach to automatically guarantee the realizability of safety requirements for continuous state and action spaces. Realizability is an essential property that confirms the shield will always be able to generate a safe action for any state in the environment. We formally prove that realizability can also be verified with a stateful shield, enabling the incorporation of non-Markovian safety requirements. Finally, we demonstrate the effectiveness of our approach in ensuring safety without compromising policy accuracy by applying it to a navigation problem and a multi-agent particle environment.
Abstract:We develop a theory of neural synaptic balance and how it can emerge or be enforced in neural networks. For a given additive cost function $R$ (regularizer), a neuron is said to be in balance if the total cost of its input weights is equal to the total cost of its output weights. The basic example is provided by feedforward networks of ReLU units trained with $L_2$ regularizers, which exhibit balance after proper training. The theory explains this phenomenon and extends it in several directions. The first direction is the extension to bilinear and other activation functions. The second direction is the extension to more general regularizers, including all $L_p$ ($p>0$) regularizers. The third direction is the extension to non-layered architectures, recurrent architectures, convolutional architectures, as well as architectures with mixed activation functions. The theory is based on two local neuronal operations: scaling which is commutative, and balancing which is not commutative. Finally, and most importantly, given any initial set of weights, when local balancing operations are applied to each neuron in a stochastic manner, global order always emerges through the convergence of the stochastic balancing algorithm to the same unique set of balanced weights. The reason for this convergence is the existence of an underlying strictly convex optimization problem where the relevant variables are constrained to a linear, only architecture-dependent, manifold. The theory is corroborated through various simulations carried out on benchmark data sets. Scaling and balancing operations are entirely local and thus physically plausible in biological and neuromorphic networks.
Abstract:The measurements performed by particle physics experiments must account for the imperfect response of the detectors used to observe the interactions. One approach, unfolding, statistically adjusts the experimental data for detector effects. Recently, generative machine learning models have shown promise for performing unbinned unfolding in a high number of dimensions. However, all current generative approaches are limited to unfolding a fixed set of observables, making them unable to perform full-event unfolding in the variable dimensional environment of collider data. A novel modification to the variational latent diffusion model (VLD) approach to generative unfolding is presented, which allows for unfolding of high- and variable-dimensional feature spaces. The performance of this method is evaluated in the context of semi-leptonic top quark pair production at the Large Hadron Collider.
Abstract:Creating controlled methods to simulate neurodegeneration in artificial intelligence (AI) is crucial for applications that emulate brain function decline and cognitive disorders. We use IQ tests performed by Large Language Models (LLMs) and, more specifically, the LLaMA 2 to introduce the concept of ``neural erosion." This deliberate erosion involves ablating synapses or neurons, or adding Gaussian noise during or after training, resulting in a controlled progressive decline in the LLMs' performance. We are able to describe the neurodegeneration in the IQ tests and show that the LLM first loses its mathematical abilities and then its linguistic abilities, while further losing its ability to understand the questions. To the best of our knowledge, this is the first work that models neurodegeneration with text data, compared to other works that operate in the computer vision domain. Finally, we draw similarities between our study and cognitive decline clinical studies involving test subjects. We find that with the application of neurodegenerative methods, LLMs lose abstract thinking abilities, followed by mathematical degradation, and ultimately, a loss in linguistic ability, responding to prompts incoherently. These findings are in accordance with human studies.
Abstract:The deliberate manipulation of ammonium persulfate, methylenebisacrylamide, dimethyleacrylamide, and polyethylene oxide concentrations resulted in the development of a hydrogel with an exceptional stretchability, capable of extending up to 260 times its original length. This study aims to elucidate the molecular architecture underlying this unique phenomenon by exploring potential reaction mechanisms, facilitated by an artificial intelligence prediction system. Artificial intelligence predictor introduces a novel approach to interlinking two polymers, involving the formation of networks interconnected with linear chains following random chain scission. This novel configuration leads to the emergence of a distinct type of hydrogel, herein referred to as a "Span Network." Additionally, Fourier-transform infrared spectroscopy (FTIR) is used to investigate functional groups that may be implicated in the proposed mechanism, with ester formation confirmed among numerous hydroxyl end groups obtained from chain scission of PEO and carboxyl groups formed on hydrogel networks.
Abstract:The generation of natural and high-quality speech from text is a challenging problem in the field of natural language processing. In addition to speech generation, speech editing is also a crucial task, which requires the seamless and unnoticeable integration of edited speech into synthesized speech. We propose a novel approach to speech editing by leveraging a pre-trained text-to-speech (TTS) model, such as FastSpeech 2, and incorporating a double attention block network on top of it to automatically merge the synthesized mel-spectrogram with the mel-spectrogram of the edited text. We refer to this model as AttentionStitch, as it harnesses attention to stitch audio samples together. We evaluate the proposed AttentionStitch model against state-of-the-art baselines on both single and multi-speaker datasets, namely LJSpeech and VCTK. We demonstrate its superior performance through an objective and a subjective evaluation test involving 15 human participants. AttentionStitch is capable of producing high-quality speech, even for words not seen during training, while operating automatically without the need for human intervention. Moreover, AttentionStitch is fast during both training and inference and is able to generate human-sounding edited speech.
Abstract:This study evaluates the performance of large language models, specifically GPT-3.5 and BARD (supported by Gemini Pro model), in undergraduate admissions exams proposed by the National Polytechnic Institute in Mexico. The exams cover Engineering/Mathematical and Physical Sciences, Biological and Medical Sciences, and Social and Administrative Sciences. Both models demonstrated proficiency, exceeding the minimum acceptance scores for respective academic programs to up to 75% for some academic programs. GPT-3.5 outperformed BARD in Mathematics and Physics, while BARD performed better in History and questions related to factual information. Overall, GPT-3.5 marginally surpassed BARD with scores of 60.94% and 60.42%, respectively.
Abstract:In Inertial Confinement Fusion (ICF) process, roughly a 2mm spherical shell made of high density carbon is used as target for laser beams, which compress and heat it to energy levels needed for high fusion yield. These shells are polished meticulously to meet the standards for a fusion shot. However, the polishing of these shells involves multiple stages, with each stage taking several hours. To make sure that the polishing process is advancing in the right direction, we are able to measure the shell surface roughness. This measurement, however, is very labor-intensive, time-consuming, and requires a human operator. We propose to use machine learning models that can predict surface roughness based on the data collected from a vibration sensor that is connected to the polisher. Such models can generate surface roughness of the shells in real-time, allowing the operator to make any necessary changes to the polishing for optimal result.