Abstract:In this paper, we investigate the counter-forensic effects of the forthcoming JPEG AI standard based on neural image compression, focusing on two critical areas: deepfake image detection and image splicing localization. Neural image compression leverages advanced neural network algorithms to achieve higher compression rates while maintaining image quality. However, it introduces artifacts that closely resemble those generated by image synthesis techniques and image splicing pipelines, complicating the work of researchers when discriminating pristine from manipulated content. We comprehensively analyze JPEG AI's counter-forensic effects through extensive experiments on several state-of-the-art detectors and datasets. Our results demonstrate that an increase in false alarms impairs the performance of leading forensic detectors when analyzing genuine content processed through JPEG AI. By exposing the vulnerabilities of the available forensic tools we aim to raise the urgent need for multimedia forensics researchers to include JPEG AI images in their experimental setups and develop robust forensic techniques to distinguish between neural compression artifacts and actual manipulations.
Abstract:Recent techniques for speech deepfake detection often rely on pre-trained self-supervised models. These systems, initially developed for Automatic Speech Recognition (ASR), have proved their ability to offer a meaningful representation of speech signals, which can benefit various tasks, including deepfake detection. In this context, pre-trained models serve as feature extractors and are used to extract embeddings from input speech, which are then fed to a binary speech deepfake detector. The remarkable accuracy achieved through this approach underscores a potential relationship between ASR and speech deepfake detection. However, this connection is not yet entirely clear, and we do not know whether improved performance in ASR corresponds to higher speech deepfake detection capabilities. In this paper, we address this question through a systematic analysis. We consider two different pre-trained self-supervised ASR models, Whisper and Wav2Vec 2.0, and adapt them for the speech deepfake detection task. These models have been released in multiple versions, with increasing number of parameters and enhanced ASR performance. We investigate whether performance improvements in ASR correlate with improvements in speech deepfake detection. Our results provide insights into the relationship between these two tasks and offer valuable guidance for the development of more effective speech deepfake detectors.
Abstract:When dealing with multimedia data, source attribution is a key challenge from a forensic perspective. This task aims to determine how a given content was captured, providing valuable insights for various applications, including legal proceedings and integrity investigations. The source attribution problem has been addressed in different domains, from identifying the camera model used to capture specific photographs to detecting the synthetic speech generator or microphone model used to create or record given audio tracks. Recent advancements in this area rely heavily on machine learning and data-driven techniques, which often outperform traditional signal processing-based methods. However, a drawback of these systems is their need for large volumes of training data, which must reflect the latest technological trends to produce accurate and reliable predictions. This presents a significant challenge, as the rapid pace of technological progress makes it difficult to maintain datasets that are up-to-date with real-world conditions. For instance, in the task of smartphone model identification from audio recordings, the available datasets are often outdated or acquired inconsistently, making it difficult to develop solutions that are valid beyond a research environment. In this paper we present POLIPHONE, a dataset for smartphone model identification from audio recordings. It includes data from 20 recent smartphones recorded in a controlled environment to ensure reproducibility and scalability for future research. The released tracks contain audio data from various domains (i.e., speech, music, environmental sounds), making the corpus versatile and applicable to a wide range of use cases. We also present numerous experiments to benchmark the proposed dataset using a state-of-the-art classifier for smartphone model identification from audio recordings.
Abstract:Recent advancements in artificial intelligence have enabled generative models to produce synthetic scientific images that are indistinguishable from pristine ones, posing a challenge even for expert scientists habituated to working with such content. When exploited by organizations known as paper mills, which systematically generate fraudulent articles, these technologies can significantly contribute to the spread of misinformation about ungrounded science, potentially undermining trust in scientific research. While previous studies have explored black-box solutions, such as Convolutional Neural Networks, for identifying synthetic content, only some have addressed the challenge of generalizing across different models and providing insight into the artifacts in synthetic images that inform the detection process. This study aims to identify explainable artifacts generated by state-of-the-art generative models (e.g., Generative Adversarial Networks and Diffusion Models) and leverage them for open-set identification and source attribution (i.e., pointing to the model that created the image).
Abstract:In speech deepfake detection, one of the critical aspects is developing detectors able to generalize on unseen data and distinguish fake signals across different datasets. Common approaches to this challenge involve incorporating diverse data into the training process or fine-tuning models on unseen datasets. However, these solutions can be computationally demanding and may lead to the loss of knowledge acquired from previously learned data. Continual learning techniques offer a potential solution to this problem, allowing the models to learn from unseen data without losing what they have already learned. Still, the optimal way to apply these algorithms for speech deepfake detection remains unclear, and we do not know which is the best way to apply these algorithms to the developed models. In this paper we address this aspect and investigate whether, when retraining a speech deepfake detector, it is more effective to apply continual learning across the entire model or to update only some of its layers while freezing others. Our findings, validated across multiple models, indicate that the most effective approach among the analyzed ones is to update only the weights of the initial layers, which are responsible for processing the input features of the detector.
Abstract:Speech deepfakes pose a significant threat to personal security and content authenticity. Several detectors have been proposed in the literature, and one of the primary challenges these systems have to face is the generalization over unseen data to identify fake signals across a wide range of datasets. In this paper, we introduce a novel approach for enhancing speech deepfake detection performance using a Mixture of Experts architecture. The Mixture of Experts framework is well-suited for the speech deepfake detection task due to its ability to specialize in different input types and handle data variability efficiently. This approach offers superior generalization and adaptability to unseen data compared to traditional single models or ensemble methods. Additionally, its modular structure supports scalable updates, making it more flexible in managing the evolving complexity of deepfake techniques while maintaining high detection accuracy. We propose an efficient, lightweight gating mechanism to dynamically assign expert weights for each input, optimizing detection performance. Experimental results across multiple datasets demonstrate the effectiveness and potential of our proposed approach.
Abstract:Text-To-Music (TTM) models have recently revolutionized the automatic music generation research field. Specifically, by reaching superior performances to all previous state-of-the-art models and by lowering the technical proficiency needed to use them. Due to these reasons, they have readily started to be adopted for commercial uses and music production practices. This widespread diffusion of TTMs poses several concerns regarding copyright violation and rightful attribution, posing the need of serious consideration of them by the audio forensics community. In this paper, we tackle the problem of detection and attribution of TTM-generated data. We propose a dataset, FakeMusicCaps that contains several versions of the music-caption pairs dataset MusicCaps re-generated via several state-of-the-art TTM techniques. We evaluate the proposed dataset by performing initial experiments regarding the detection and attribution of TTM-generated audio.
Abstract:Recent breakthroughs in deep learning and generative systems have significantly fostered the creation of synthetic media, as well as the local alteration of real content via the insertion of highly realistic synthetic manipulations. Local image manipulation, in particular, poses serious challenges to the integrity of digital content and societal trust. This problem is not only confined to multimedia data, but also extends to biological images included in scientific publications, like images depicting Western blots. In this work, we address the task of localizing synthetic manipulations in Western blot images. To discriminate between pristine and synthetic pixels of an analyzed image, we propose a synthetic detector that operates on small patches extracted from the image. We aggregate patch contributions to estimate a tampering heatmap, highlighting synthetic pixels out of pristine ones. Our methodology proves effective when tested over two manipulated Western blot image datasets, one altered automatically and the other manually by exploiting advanced AI-based image manipulation tools that are unknown at our training stage. We also explore the robustness of our method over an external dataset of other scientific images depicting different semantics, manipulated through unseen generation techniques.
Abstract:Speech deepfake detection has recently gained significant attention within the multimedia forensics community. Related issues have also been explored, such as the identification of partially fake signals, i.e., tracks that include both real and fake speech segments. However, generating high-quality spliced audio is not as straightforward as it may appear. Spliced signals are typically created through basic signal concatenation. This process could introduce noticeable artifacts that can make the generated data easier to detect. We analyze spliced audio tracks resulting from signal concatenation, investigate their artifacts and assess whether such artifacts introduce any bias in existing datasets. Our findings reveal that by analyzing splicing artifacts, we can achieve a detection EER of 6.16% and 7.36% on PartialSpoof and HAD datasets, respectively, without needing to train any detector. These results underscore the complexities of generating reliable spliced audio data and lead to discussions that can help improve future research in this area.
Abstract:AI-generated synthetic media, also called Deepfakes, have significantly influenced so many domains, from entertainment to cybersecurity. Generative Adversarial Networks (GANs) and Diffusion Models (DMs) are the main frameworks used to create Deepfakes, producing highly realistic yet fabricated content. While these technologies open up new creative possibilities, they also bring substantial ethical and security risks due to their potential misuse. The rise of such advanced media has led to the development of a cognitive bias known as Impostor Bias, where individuals doubt the authenticity of multimedia due to the awareness of AI's capabilities. As a result, Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques, especially Convolutional Neural Networks (CNNs). Research in forensic Deepfake technology encompasses five main areas: detection, attribution and recognition, passive authentication, detection in realistic scenarios, and active authentication. Each area tackles specific challenges, from tracing the origins of synthetic media and examining its inherent characteristics for authenticity. This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.