University of Catania
Abstract:Deepfakes, synthetic images generated by deep learning algorithms, represent one of the biggest challenges in the field of Digital Forensics. The scientific community is working to develop approaches that can discriminate the origin of digital images (real or AI-generated). However, these methodologies face the challenge of generalization, that is, the ability to discern the nature of an image even if it is generated by an architecture not seen during training. This usually leads to a drop in performance. In this context, we propose a novel approach based on three blocks called Base Models, each of which is responsible for extracting the discriminative features of a specific image class (Diffusion Model-generated, GAN-generated, or real) as it is trained by exploiting deliberately unbalanced datasets. The features extracted from each block are then concatenated and processed to discriminate the origin of the input image. Experimental results showed that this approach not only demonstrates good robust capabilities to JPEG compression but also outperforms state-of-the-art methods in several generalization tests. Code, models and dataset are available at https://github.com/opontorno/block-based_deepfake-detection.
Abstract:Deepfakes represent one of the toughest challenges in the world of Cybersecurity and Digital Forensics, especially considering the high-quality results obtained with recent generative AI-based solutions. Almost all generative models leave unique traces in synthetic data that, if analyzed and identified in detail, can be exploited to improve the generalization limitations of existing deepfake detectors. In this paper we analyzed deepfake images in the frequency domain generated by both GAN and Diffusion Model engines, examining in detail the underlying statistical distribution of Discrete Cosine Transform (DCT) coefficients. Recognizing that not all coefficients contribute equally to image detection, we hypothesize the existence of a unique "discriminative fingerprint", embedded in specific combinations of coefficients. To identify them, Machine Learning classifiers were trained on various combinations of coefficients. In addition, the Explainable AI (XAI) LIME algorithm was used to search for intrinsic discriminative combinations of coefficients. Finally, we performed a robustness test to analyze the persistence of traces by applying JPEG compression. The experimental results reveal the existence of traces left by the generative models that are more discriminative and persistent at JPEG attacks.