Abstract:When dealing with multimedia data, source attribution is a key challenge from a forensic perspective. This task aims to determine how a given content was captured, providing valuable insights for various applications, including legal proceedings and integrity investigations. The source attribution problem has been addressed in different domains, from identifying the camera model used to capture specific photographs to detecting the synthetic speech generator or microphone model used to create or record given audio tracks. Recent advancements in this area rely heavily on machine learning and data-driven techniques, which often outperform traditional signal processing-based methods. However, a drawback of these systems is their need for large volumes of training data, which must reflect the latest technological trends to produce accurate and reliable predictions. This presents a significant challenge, as the rapid pace of technological progress makes it difficult to maintain datasets that are up-to-date with real-world conditions. For instance, in the task of smartphone model identification from audio recordings, the available datasets are often outdated or acquired inconsistently, making it difficult to develop solutions that are valid beyond a research environment. In this paper we present POLIPHONE, a dataset for smartphone model identification from audio recordings. It includes data from 20 recent smartphones recorded in a controlled environment to ensure reproducibility and scalability for future research. The released tracks contain audio data from various domains (i.e., speech, music, environmental sounds), making the corpus versatile and applicable to a wide range of use cases. We also present numerous experiments to benchmark the proposed dataset using a state-of-the-art classifier for smartphone model identification from audio recordings.
Abstract:Due to the latest environmental concerns in keeping at bay contaminants emissions in urban areas, air pollution forecasting has been rising the forefront of all researchers around the world. When predicting pollutant concentrations, it is common to include the effects of environmental factors that influence these concentrations within an extended period, like traffic, meteorological conditions and geographical information. Most of the existing approaches exploit this information as past covariates, i.e., past exogenous variables that affected the pollutant but were not affected by it. In this paper, we present a novel forecasting methodology to predict NO$_2$ concentration via both past and future covariates. Future covariates are represented by weather forecasts and future calendar events, which are already known at prediction time. In particular, we deal with air quality observations in a city-wide network of ground monitoring stations, modeling the data structure and estimating the predictions with a Spatiotemporal Graph Neural Network (STGNN). We propose a conditioning block that embeds past and future covariates into the current observations. After extracting meaningful spatiotemporal representations, these are fused together and projected into the forecasting horizon to generate the final prediction. To the best of our knowledge, it is the first time that future covariates are included in time series predictions in a structured way. Remarkably, we find that conditioning on future weather information has a greater impact than considering past traffic conditions. We release our code implementation at https://github.com/polimi-ispl/MAGCRN.
Abstract:Enhancing the resolution of Biogenic Volatile Organic Compound (BVOC) emission maps is a critical task in remote sensing. Recently, some Super-Resolution (SR) methods based on Deep Learning (DL) have been proposed, leveraging data from numerical simulations for their training process. However, when dealing with data derived from satellite observations, the reconstruction is particularly challenging due to the scarcity of measurements to train SR algorithms with. In our work, we aim at super-resolving low resolution emission maps derived from satellite observations by leveraging the information of emission maps obtained through numerical simulations. To do this, we combine a SR method based on DL with Domain Adaptation (DA) techniques, harmonizing the different aggregation strategies and spatial information used in simulated and observed domains to ensure compatibility. We investigate the effectiveness of DA strategies at different stages by systematically varying the number of simulated and observed emissions used, exploring the implications of data scarcity on the adaptation strategies. To the best of our knowledge, there are no prior investigations of DA in satellite-derived BVOC maps enhancement. Our work represents a first step toward the development of robust strategies for the reconstruction of observed BVOC emissions.
Abstract:Biogenic Volatile Organic Compounds (BVOCs) emitted from the terrestrial ecosystem into the Earth's atmosphere are an important component of atmospheric chemistry. Due to the scarcity of measurement, a reliable enhancement of BVOCs emission maps can aid in providing denser data for atmospheric chemical, climate, and air quality models. In this work, we propose a strategy to super-resolve coarse BVOC emission maps by simultaneously exploiting the contributions of different compounds. To this purpose, we first accurately investigate the spatial inter-connections between several BVOC species. Then, we exploit the found similarities to build a Multi-Image Super-Resolution (MISR) system, in which a number of emission maps associated with diverse compounds are aggregated to boost Super-Resolution (SR) performance. We compare different configurations regarding the species and the number of joined BVOCs. Our experimental results show that incorporating BVOCs' relationship into the process can substantially improve the accuracy of the super-resolved maps. Interestingly, the best results are achieved when we aggregate the emission maps of strongly uncorrelated compounds. This peculiarity seems to confirm what was already guessed for other data-domains, i.e., joined uncorrelated information are more helpful than correlated ones to boost MISR performance. Nonetheless, the proposed work represents the first attempt in SR of BVOC emissions through the fusion of multiple different compounds.
Abstract:Biogenic Volatile Organic Compounds (BVOCs) play a critical role in biosphere-atmosphere interactions, being a key factor in the physical and chemical properties of the atmosphere and climate. Acquiring large and fine-grained BVOC emission maps is expensive and time-consuming, so most of the available BVOC data are obtained on a loose and sparse sampling grid or on small regions. However, high-resolution BVOC data are desirable in many applications, such as air quality, atmospheric chemistry, and climate monitoring. In this work, we propose to investigate the possibility of enhancing BVOC acquisitions, taking a step forward in explaining the relationships between plants and these compounds. We do so by comparing the performances of several state-of-the-art neural networks proposed for Single-Image Super-Resolution (SISR), showing how to adapt them to correctly handle emission data through preprocessing. Moreover, we also consider realistic scenarios, considering both temporal and geographical constraints. Finally, we present possible future developments in terms of Super-Resolution (SR) generalization, considering the scale-invariance property and super-resolving emissions from unseen compounds.
Abstract:This work proposes a method for source device identification from speech recordings that applies neural-network-based denoising, to mitigate the impact of counter-forensics attacks using noise injection. The method is evaluated by comparing the impact of denoising on three state-of-the-art features for microphone classification, determining their discriminating power with and without denoising being applied. The proposed framework achieves a significant performance increase for noisy material, and more generally, validates the usefulness of applying denoising prior to device identification for noisy recordings.