Abstract:This paper presents a baseline approach and an experimental protocol for a specific content verification problem: detecting discrepancies between the audio and video modalities in multimedia content. We first design and optimize an audio-visual scene classifier, to compare with existing classification baselines that use both modalities. Then, by applying this classifier separately to the audio and the visual modality, we can detect scene-class inconsistencies between them. To facilitate further research and provide a common evaluation platform, we introduce an experimental protocol and a benchmark dataset simulating such inconsistencies. Our approach achieves state-of-the-art results in scene classification and promising outcomes in audio-visual discrepancies detection, highlighting its potential in content verification applications.
Abstract:In this paper we present a novel approach for environment classification for speech recordings, which does not require the selection of decaying reverberation tails. It is based on a multi-band RT60 analysis of blind channel estimates and achieves an accuracy of up to 93.6% on test recordings derived from the ACE corpus.
Abstract:In this paper the current status and open challenges of synthetic speech detection are addressed. The work comprises an initial analysis of available open datasets and of existing detection methods, a description of the requirements for new research datasets compliant with regulations and better representing real-case scenarios, and a discussion of the desired characteristics of future trustworthy detection methods in terms of both functional and non-functional requirements. Compared to other works, based on specific detection solutions or presenting single dataset of synthetic speeches, our paper is meant to orient future state-of-the-art research in the domain, to quickly lessen the current gap between synthesis and detection approaches.
Abstract:This work proposes a method for source device identification from speech recordings that applies neural-network-based denoising, to mitigate the impact of counter-forensics attacks using noise injection. The method is evaluated by comparing the impact of denoising on three state-of-the-art features for microphone classification, determining their discriminating power with and without denoising being applied. The proposed framework achieves a significant performance increase for noisy material, and more generally, validates the usefulness of applying denoising prior to device identification for noisy recordings.