Abstract:Several variants of Neural Radiance Fields (NeRFs) have significantly improved the accuracy of synthesized images and surface reconstruction of 3D scenes/objects. In all of these methods, a key characteristic is that none can train the neural network with every possible input data, specifically, every pixel and potential 3D point along the projection rays due to scalability issues. While vanilla NeRFs uniformly sample both the image pixels and 3D points along the projection rays, some variants focus only on guiding the sampling of the 3D points along the projection rays. In this paper, we leverage the implicit surface representation of the foreground scene and model a probability density function in a 3D image projection space to achieve a more targeted sampling of the rays toward regions of interest, resulting in improved rendering. Additionally, a new surface reconstruction loss is proposed for improved performance. This new loss fully explores the proposed 3D image projection space model and incorporates near-to-surface and empty space components. By integrating our novel sampling strategy and novel loss into current state-of-the-art neural implicit surface renderers, we achieve more accurate and detailed 3D reconstructions and improved image rendering, especially for the regions of interest in any given scene.
Abstract:The task of estimating the world model describing the dynamics of a real world process assumes immense importance for anticipating and preparing for future outcomes. For applications such as video surveillance, robotics applications, autonomous driving, etc. this objective entails synthesizing plausible visual futures, given a few frames of a video to set the visual context. Towards this end, we propose ProgGen, which undertakes the task of video frame prediction by representing the dynamics of the video using a set of neuro-symbolic, human-interpretable set of states (one per frame) by leveraging the inductive biases of Large (Vision) Language Models (LLM/VLM). In particular, ProgGen utilizes LLM/VLM to synthesize programs: (i) to estimate the states of the video, given the visual context (i.e. the frames); (ii) to predict the states corresponding to future time steps by estimating the transition dynamics; (iii) to render the predicted states as visual RGB-frames. Empirical evaluations reveal that our proposed method outperforms competing techniques at the task of video frame prediction in two challenging environments: (i) PhyWorld (ii) Cart Pole. Additionally, ProgGen permits counter-factual reasoning and interpretable video generation attesting to its effectiveness and generalizability for video generation tasks.
Abstract:Audio-Visual Video Parsing (AVVP) entails the challenging task of localizing both uni-modal events (i.e., those occurring exclusively in either the visual or acoustic modality of a video) and multi-modal events (i.e., those occurring in both modalities concurrently). Moreover, the prohibitive cost of annotating training data with the class labels of all these events, along with their start and end times, imposes constraints on the scalability of AVVP techniques unless they can be trained in a weakly-supervised setting, where only modality-agnostic, video-level labels are available in the training data. To this end, recently proposed approaches seek to generate segment-level pseudo-labels to better guide model training. However, the absence of inter-segment dependencies when generating these pseudo-labels and the general bias towards predicting labels that are absent in a segment limit their performance. This work proposes a novel approach towards overcoming these weaknesses called Uncertainty-weighted Weakly-supervised Audio-visual Video Parsing (UWAV). Additionally, our innovative approach factors in the uncertainty associated with these estimated pseudo-labels and incorporates a feature mixup based training regularization for improved training. Empirical results show that UWAV outperforms state-of-the-art methods for the AVVP task on multiple metrics, across two different datasets, attesting to its effectiveness and generalizability.
Abstract:Neural implicit surface representation techniques are in high demand for advancing technologies in augmented reality/virtual reality, digital twins, autonomous navigation, and many other fields. With their ability to model object surfaces in a scene as a continuous function, such techniques have made remarkable strides recently, especially over classical 3D surface reconstruction methods, such as those that use voxels or point clouds. However, these methods struggle with scenes that have varied and complex surfaces principally because they model any given scene with a single encoder network that is tasked to capture all of low through high-surface frequency information in the scene simultaneously. In this work, we propose a novel, neural implicit surface representation approach called FreBIS to overcome this challenge. FreBIS works by stratifying the scene based on the frequency of surfaces into multiple frequency levels, with each level (or a group of levels) encoded by a dedicated encoder. Moreover, FreBIS encourages these encoders to capture complementary information by promoting mutual dissimilarity of the encoded features via a novel, redundancy-aware weighting module. Empirical evaluations on the challenging BlendedMVS dataset indicate that replacing the standard encoder in an off-the-shelf neural surface reconstruction method with our frequency-stratified encoders yields significant improvements. These enhancements are evident both in the quality of the reconstructed 3D surfaces and in the fidelity of their renderings from any viewpoint.
Abstract:Our work addresses the problem of learning to localize objects in an open-world setting, i.e., given the bounding box information of a limited number of object classes during training, the goal is to localize all objects, belonging to both the training and unseen classes in an image, during inference. Towards this end, recent work in this area has focused on improving the characterization of objects either explicitly by proposing new objective functions (localization quality) or implicitly using object-centric auxiliary-information, such as depth information, pixel/region affinity map etc. In this work, we address this problem by incorporating background information to guide the learning of the notion of objectness. Specifically, we propose a novel framework to discover background regions in an image and train an object proposal network to not detect any objects in these regions. We formulate the background discovery task as that of identifying image regions that are not discriminative, i.e., those that are redundant and constitute low information content. We conduct experiments on standard benchmarks to showcase the effectiveness of our proposed approach and observe significant improvements over the previous state-of-the-art approaches for this task.
Abstract:Extensions of Neural Radiance Fields (NeRFs) to model dynamic scenes have enabled their near photo-realistic, free-viewpoint rendering. Although these methods have shown some potential in creating immersive experiences, two drawbacks limit their ubiquity: (i) a significant reduction in reconstruction quality when the computing budget is limited, and (ii) a lack of semantic understanding of the underlying scenes. To address these issues, we introduce Gear-NeRF, which leverages semantic information from powerful image segmentation models. Our approach presents a principled way for learning a spatio-temporal (4D) semantic embedding, based on which we introduce the concept of gears to allow for stratified modeling of dynamic regions of the scene based on the extent of their motion. Such differentiation allows us to adjust the spatio-temporal sampling resolution for each region in proportion to its motion scale, achieving more photo-realistic dynamic novel view synthesis. At the same time, almost for free, our approach enables free-viewpoint tracking of objects of interest - a functionality not yet achieved by existing NeRF-based methods. Empirical studies validate the effectiveness of our method, where we achieve state-of-the-art rendering and tracking performance on multiple challenging datasets.
Abstract:The primary bottleneck towards obtaining good recognition performance in IR images is the lack of sufficient labeled training data, owing to the cost of acquiring such data. Realizing that object detection methods for the RGB modality are quite robust (at least for some commonplace classes, like person, car, etc.), thanks to the giant training sets that exist, in this work we seek to leverage cues from the RGB modality to scale object detectors to the IR modality, while preserving model performance in the RGB modality. At the core of our method, is a novel tensor decomposition method called TensorFact which splits the convolution kernels of a layer of a Convolutional Neural Network (CNN) into low-rank factor matrices, with fewer parameters than the original CNN. We first pretrain these factor matrices on the RGB modality, for which plenty of training data are assumed to exist and then augment only a few trainable parameters for training on the IR modality to avoid over-fitting, while encouraging them to capture complementary cues from those trained only on the RGB modality. We validate our approach empirically by first assessing how well our TensorFact decomposed network performs at the task of detecting objects in RGB images vis-a-vis the original network and then look at how well it adapts to IR images of the FLIR ADAS v1 dataset. For the latter, we train models under scenarios that pose challenges stemming from data paucity. From the experiments, we observe that: (i) TensorFact shows performance gains on RGB images; (ii) further, this pre-trained model, when fine-tuned, outperforms a standard state-of-the-art object detector on the FLIR ADAS v1 dataset by about 4% in terms of mAP 50 score.
Abstract:Efficient navigation towards an audio-goal necessitates an embodied agent to not only possess the ability to use audio-visual cues effectively, but also be equipped to actively (but occasionally) seek human/oracle assistance without sacrificing autonomy, e.g., when it is uncertain of where to navigate towards locating a noisy or sporadic audio goal. To this end, we present CAVEN -- a conversational audio-visual embodied navigation agent that is capable of posing navigation questions to a human/oracle and processing the oracle responses; both in free-form natural language. At the core of CAVEN is a multimodal hierarchical reinforcement learning (RL) setup that is equipped with a high-level policy that is trained to choose from one of three low-level policies (at every step), namely: (i) to navigate using audio-visual cues, or (ii) to frame a question to the oracle and receive a short or detailed response, or (iii) ask generic questions (when unsure of what to ask) and receive instructions. Key to generating the agent's questions is our novel TrajectoryNet that forecasts the most likely next steps to the goal and a QuestionNet that uses these steps to produce a question. All the policies are learned end-to-end via the RL setup, with penalties to enforce sparsity in receiving navigation instructions from the oracle. To evaluate the performance of CAVEN, we present extensive experiments on the SoundSpaces framework for the task of semantic audio-visual navigation. Our results show that CAVEN achieves upto 12% gain in performance over competing methods, especially in localizing new sound sources, even in the presence of auditory distractions.
Abstract:There exists an unequivocal distinction between the sound produced by a static source and that produced by a moving one, especially when the source moves towards or away from the microphone. In this paper, we propose to use this connection between audio and visual dynamics for solving two challenging tasks simultaneously, namely: (i) separating audio sources from a mixture using visual cues, and (ii) predicting the 3D visual motion of a sounding source using its separated audio. Towards this end, we present Audio Separator and Motion Predictor (ASMP) -- a deep learning framework that leverages the 3D structure of the scene and the motion of sound sources for better audio source separation. At the heart of ASMP is a 2.5D scene graph capturing various objects in the video and their pseudo-3D spatial proximities. This graph is constructed by registering together 2.5D monocular depth predictions from the 2D video frames and associating the 2.5D scene regions with the outputs of an object detector applied on those frames. The ASMP task is then mathematically modeled as the joint problem of: (i) recursively segmenting the 2.5D scene graph into several sub-graphs, each associated with a constituent sound in the input audio mixture (which is then separated) and (ii) predicting the 3D motions of the corresponding sound sources from the separated audio. To empirically evaluate ASMP, we present experiments on two challenging audio-visual datasets, viz. Audio Separation in the Wild (ASIW) and Audio Visual Event (AVE). Our results demonstrate that ASMP achieves a clear improvement in source separation quality, outperforming prior works on both datasets, while also estimating the direction of motion of the sound sources better than other methods.
Abstract:Predicting the future frames of a video is a challenging task, in part due to the underlying stochastic real-world phenomena. Prior approaches to solve this task typically estimate a latent prior characterizing this stochasticity, however do not account for the predictive uncertainty of the (deep learning) model. Such approaches often derive the training signal from the mean-squared error (MSE) between the generated frame and the ground truth, which can lead to sub-optimal training, especially when the predictive uncertainty is high. Towards this end, we introduce Neural Uncertainty Quantifier (NUQ) - a stochastic quantification of the model's predictive uncertainty, and use it to weigh the MSE loss. We propose a hierarchical, variational framework to derive NUQ in a principled manner using a deep, Bayesian graphical model. Our experiments on four benchmark stochastic video prediction datasets show that our proposed framework trains more effectively compared to the state-of-the-art models (especially when the training sets are small), while demonstrating better video generation quality and diversity against several evaluation metrics.