Abstract:Cinematographers adeptly capture the essence of the world, crafting compelling visual narratives through intricate camera movements. Witnessing the strides made by large language models in perceiving and interacting with the 3D world, this study explores their capability to control cameras with human language guidance. We introduce ChatCam, a system that navigates camera movements through conversations with users, mimicking a professional cinematographer's workflow. To achieve this, we propose CineGPT, a GPT-based autoregressive model for text-conditioned camera trajectory generation. We also develop an Anchor Determinator to ensure precise camera trajectory placement. ChatCam understands user requests and employs our proposed tools to generate trajectories, which can be used to render high-quality video footage on radiance field representations. Our experiments, including comparisons to state-of-the-art approaches and user studies, demonstrate our approach's ability to interpret and execute complex instructions for camera operation, showing promising applications in real-world production settings.
Abstract:Extensions of Neural Radiance Fields (NeRFs) to model dynamic scenes have enabled their near photo-realistic, free-viewpoint rendering. Although these methods have shown some potential in creating immersive experiences, two drawbacks limit their ubiquity: (i) a significant reduction in reconstruction quality when the computing budget is limited, and (ii) a lack of semantic understanding of the underlying scenes. To address these issues, we introduce Gear-NeRF, which leverages semantic information from powerful image segmentation models. Our approach presents a principled way for learning a spatio-temporal (4D) semantic embedding, based on which we introduce the concept of gears to allow for stratified modeling of dynamic regions of the scene based on the extent of their motion. Such differentiation allows us to adjust the spatio-temporal sampling resolution for each region in proportion to its motion scale, achieving more photo-realistic dynamic novel view synthesis. At the same time, almost for free, our approach enables free-viewpoint tracking of objects of interest - a functionality not yet achieved by existing NeRF-based methods. Empirical studies validate the effectiveness of our method, where we achieve state-of-the-art rendering and tracking performance on multiple challenging datasets.
Abstract:This paper presents Deceptive-Human, a novel Prompt-to-NeRF framework capitalizing state-of-the-art control diffusion models (e.g., ControlNet) to generate a high-quality controllable 3D human NeRF. Different from direct 3D generative approaches, e.g., DreamFusion and DreamHuman, Deceptive-Human employs a progressive refinement technique to elevate the reconstruction quality. This is achieved by utilizing high-quality synthetic human images generated through the ControlNet with view-consistent loss. Our method is versatile and readily extensible, accommodating multimodal inputs, including a text prompt and additional data such as 3D mesh, poses, and seed images. The resulting 3D human NeRF model empowers the synthesis of highly photorealistic novel views from 360-degree perspectives. The key to our Deceptive-Human for hallucinating multi-view consistent synthetic human images lies in our progressive finetuning strategy. This strategy involves iteratively enhancing views using the provided multimodal inputs at each intermediate step to improve the human NeRF model. Within this iterative refinement process, view-dependent appearances are systematically eliminated to prevent interference with the underlying density estimation. Extensive qualitative and quantitative experimental comparison shows that our deceptive human models achieve state-of-the-art application quality.
Abstract:Dynamic vision sensors or event cameras provide rich complementary information for video frame interpolation. Existing state-of-the-art methods follow the paradigm of combining both synthesis-based and warping networks. However, few of those methods fully respect the intrinsic characteristics of events streams. Given that event cameras only encode intensity changes and polarity rather than color intensities, estimating optical flow from events is arguably more difficult than from RGB information. We therefore propose to incorporate RGB information in an event-guided optical flow refinement strategy. Moreover, in light of the quasi-continuous nature of the time signals provided by event cameras, we propose a divide-and-conquer strategy in which event-based intermediate frame synthesis happens incrementally in multiple simplified stages rather than in a single, long stage. Extensive experiments on both synthetic and real-world datasets show that these modifications lead to more reliable and realistic intermediate frame results than previous video frame interpolation methods. Our findings underline that a careful consideration of event characteristics such as high temporal density and elevated noise benefits interpolation accuracy.
Abstract:This paper introduces Deceptive-NeRF, a new method for enhancing the quality of reconstructed NeRF models using synthetically generated pseudo-observations, capable of handling sparse input and removing floater artifacts. Our proposed method involves three key steps: 1) reconstruct a coarse NeRF model from sparse inputs; 2) generate pseudo-observations based on the coarse model; 3) refine the NeRF model using pseudo-observations to produce a high-quality reconstruction. To generate photo-realistic pseudo-observations that faithfully preserve the identity of the reconstructed scene while remaining consistent with the sparse inputs, we develop a rectification latent diffusion model that generates images conditional on a coarse RGB image and depth map, which are derived from the coarse NeRF and latent text embedding from input images. Extensive experiments show that our method is effective and can generate perceptually high-quality NeRF even with very sparse inputs.
Abstract:High-resolution heterogeneous reconstruction of 3D structures of proteins and other biomolecules using cryo-electron microscopy (cryo-EM) is essential for understanding fundamental processes of life. However, it is still challenging to reconstruct the continuous motions of 3D structures from hundreds of thousands of noisy and randomly oriented 2D cryo-EM images. Existing methods based on coordinate-based neural networks show compelling results to model continuous conformations of 3D structures in the Fourier domain, but they suffer from a limited ability to model local flexible regions and lack interpretability. We propose a novel approach, cryoFormer, that utilizes a transformer-based network architecture for continuous heterogeneous cryo-EM reconstruction. We for the first time directly reconstruct continuous conformations of 3D structures using an implicit feature volume in the 3D spatial domain. A novel deformation transformer decoder further improves reconstruction quality and, more importantly, locates and robustly tackles flexible 3D regions caused by conformations. In experiments, our method outperforms current approaches on three public datasets (1 synthetic and 2 experimental) and a new synthetic dataset of PEDV spike protein. The code and new synthetic dataset will be released for better reproducibility of our results. Project page: https://cryoformer.github.io.
Abstract:While Neural Radiance Fields (NeRFs) had achieved unprecedented novel view synthesis results, they have been struggling in dealing with large-scale cluttered scenes with sparse input views and highly view-dependent appearances. Specifically, existing NeRF-based models tend to produce blurry rendering with the volumetric reconstruction often inaccurate, where a lot of reconstruction errors are observed in the form of foggy "floaters" hovering within the entire volume of an opaque 3D scene. Such inaccuracies impede NeRF's potential for accurate 3D NeRF registration, object detection, segmentation, etc., which possibly accounts for only limited significant research effort so far to directly address these important 3D fundamental computer vision problems to date. This paper analyzes the NeRF's struggles in such settings and proposes Clean-NeRF for accurate 3D reconstruction and novel view rendering in complex scenes. Our key insights consist of enforcing effective appearance and geometry constraints, which are absent in the conventional NeRF reconstruction, by 1) automatically detecting and modeling view-dependent appearances in the training views to prevent them from interfering with density estimation, which is complete with 2) a geometric correction procedure performed on each traced ray during inference. Clean-NeRF can be implemented as a plug-in that can immediately benefit existing NeRF-based methods without additional input. Codes will be released.
Abstract:We present radiance field propagation (RFP), a novel approach to segmenting objects in 3D during reconstruction given only unlabeled multi-view images of a scene. RFP is derived from emerging neural radiance field-based techniques, which jointly encodes semantics with appearance and geometry. The core of our method is a novel propagation strategy for individual objects' radiance fields with a bidirectional photometric loss, enabling an unsupervised partitioning of a scene into salient or meaningful regions corresponding to different object instances. To better handle complex scenes with multiple objects and occlusions, we further propose an iterative expectation-maximization algorithm to refine object masks. To the best of our knowledge, RFP is the first unsupervised approach for tackling 3D scene object segmentation for neural radiance field (NeRF) without any supervision, annotations, or other cues such as 3D bounding boxes and prior knowledge of object class. Experiments demonstrate that RFP achieves feasible segmentation results that are more accurate than previous unsupervised image/scene segmentation approaches, and are comparable to existing supervised NeRF-based methods. The segmented object representations enable individual 3D object editing operations.
Abstract:Implicit neural representations such as Neural Radiance Field (NeRF) have focused mainly on modeling static objects captured under multi-view settings where real-time rendering can be achieved with smart data structures, e.g., PlenOctree. In this paper, we present a novel Fourier PlenOctree (FPO) technique to tackle efficient neural modeling and real-time rendering of dynamic scenes captured under the free-view video (FVV) setting. The key idea in our FPO is a novel combination of generalized NeRF, PlenOctree representation, volumetric fusion and Fourier transform. To accelerate FPO construction, we present a novel coarse-to-fine fusion scheme that leverages the generalizable NeRF technique to generate the tree via spatial blending. To tackle dynamic scenes, we tailor the implicit network to model the Fourier coefficients of timevarying density and color attributes. Finally, we construct the FPO and train the Fourier coefficients directly on the leaves of a union PlenOctree structure of the dynamic sequence. We show that the resulting FPO enables compact memory overload to handle dynamic objects and supports efficient fine-tuning. Extensive experiments show that the proposed method is 3000 times faster than the original NeRF and achieves over an order of magnitude acceleration over SOTA while preserving high visual quality for the free-viewpoint rendering of unseen dynamic scenes.
Abstract:Some of the most exciting experiences that Metaverse promises to offer, for instance, live interactions with virtual characters in virtual environments, require real-time photo-realistic rendering. 3D reconstruction approaches to rendering, active or passive, still require extensive cleanup work to fix the meshes or point clouds. In this paper, we present a neural volumography technique called neural volumetric video or NeuVV to support immersive, interactive, and spatial-temporal rendering of volumetric video contents with photo-realism and in real-time. The core of NeuVV is to efficiently encode a dynamic neural radiance field (NeRF) into renderable and editable primitives. We introduce two types of factorization schemes: a hyper-spherical harmonics (HH) decomposition for modeling smooth color variations over space and time and a learnable basis representation for modeling abrupt density and color changes caused by motion. NeuVV factorization can be integrated into a Video Octree (VOctree) analogous to PlenOctree to significantly accelerate training while reducing memory overhead. Real-time NeuVV rendering further enables a class of immersive content editing tools. Specifically, NeuVV treats each VOctree as a primitive and implements volume-based depth ordering and alpha blending to realize spatial-temporal compositions for content re-purposing. For example, we demonstrate positioning varied manifestations of the same performance at different 3D locations with different timing, adjusting color/texture of the performer's clothing, casting spotlight shadows and synthesizing distance falloff lighting, etc, all at an interactive speed. We further develop a hybrid neural-rasterization rendering framework to support consumer-level VR headsets so that the aforementioned volumetric video viewing and editing, for the first time, can be conducted immersively in virtual 3D space.