Abstract:Imitation Learning (IL) has emerged as a powerful approach in robotics, allowing robots to acquire new skills by mimicking human actions. Despite its potential, the data collection process for IL remains a significant challenge due to the logistical difficulties and high costs associated with obtaining high-quality demonstrations. To address these issues, we propose a low-cost visual teleoperation system for bimanual manipulation tasks, called VITAL. Our approach leverages affordable hardware and visual processing techniques to collect demonstrations, which are then augmented to create extensive training datasets for imitation learning. We enhance the generalizability and robustness of the learned policies by utilizing both real and simulated environments and human-in-the-loop corrections. We evaluated our method through several rounds of experiments in simulated and real-robot settings, focusing on tasks of varying complexity, including bottle collecting, stacking objects, and hammering. Our experimental results validate the effectiveness of our approach in learning robust robot policies from simulated data, significantly improved by human-in-the-loop corrections and real-world data integration. Additionally, we demonstrate the framework's capability to generalize to new tasks, such as setting a drink tray, showcasing its adaptability and potential for handling a wide range of real-world bimanual manipulation tasks. A video of the experiments can be found at: https://youtu.be/YeVAMRqRe64?si=R179xDlEGc7nPu8i
Abstract:In this work, we delve into the intricate synergy among non-prehensile actions like pushing, and prehensile actions such as grasping and throwing, within the domain of robotic manipulation. We introduce an innovative approach to learning these synergies by leveraging model-free deep reinforcement learning. The robot's workflow involves detecting the pose of the target object and the basket at each time step, predicting the optimal push configuration to isolate the target object, determining the appropriate grasp configuration, and inferring the necessary parameters for an accurate throw into the basket. This empowers robots to skillfully reconfigure cluttered scenarios through pushing, creating space for collision-free grasping actions. Simultaneously, we integrate throwing behavior, showcasing how this action significantly extends the robot's operational reach. Ensuring safety, we developed a simulation environment in Gazebo for robot training, applying the learned policy directly to our real robot. Notably, this work represents a pioneering effort to learn the synergy between pushing, grasping, and throwing actions. Extensive experimentation in both simulated and real-robot scenarios substantiates the effectiveness of our approach across diverse settings. Our approach achieves a success rate exceeding 80\% in both simulated and real-world scenarios. A video showcasing our experiments is available online at: https://youtu.be/q1l4BJVDbRw
Abstract:Robots operating in human-centric environments require the integration of visual grounding and grasping capabilities to effectively manipulate objects based on user instructions. This work focuses on the task of referring grasp synthesis, which predicts a grasp pose for an object referred through natural language in cluttered scenes. Existing approaches often employ multi-stage pipelines that first segment the referred object and then propose a suitable grasp, and are evaluated in private datasets or simulators that do not capture the complexity of natural indoor scenes. To address these limitations, we develop a challenging benchmark based on cluttered indoor scenes from OCID dataset, for which we generate referring expressions and connect them with 4-DoF grasp poses. Further, we propose a novel end-to-end model (CROG) that leverages the visual grounding capabilities of CLIP to learn grasp synthesis directly from image-text pairs. Our results show that vanilla integration of CLIP with pretrained models transfers poorly in our challenging benchmark, while CROG achieves significant improvements both in terms of grounding and grasping. Extensive robot experiments in both simulation and hardware demonstrate the effectiveness of our approach in challenging interactive object grasping scenarios that include clutter.
Abstract:This work develops a data-efficient learning from demonstration framework which exploits the use of rich tactile sensing and achieves fine dexterous bimanual manipulation. Specifically, we formulated a convolutional autoencoder network that can effectively extract and encode high-dimensional tactile information. Further, we developed a behaviour cloning network that can learn human-like sensorimotor skills demonstrated directly on the robot hardware in the task space by fusing both proprioceptive and tactile feedback. Our comparison study with the baseline method revealed the effectiveness of the contact information, which enabled successful extraction and replication of the demonstrated motor skills. Extensive experiments on real dual-arm robots demonstrated the robustness and effectiveness of the fine pinch grasp policy directly learned from one-shot demonstration, including grasping of the same object with different initial poses, generalizing to ten unseen new objects, robust and firm grasping against external pushes, as well as contact-aware and reactive re-grasping in case of dropping objects under very large perturbations. Moreover, the saliency map method is employed to describe the weight distribution across various modalities during pinch grasping. The video is available online at: \href{https://youtu.be/4Pg29bUBKqs}{https://youtu.be/4Pg29bUBKqs}.
Abstract:Generating high-quality instance-wise grasp configurations provides critical information of how to grasp specific objects in a multi-object environment and is of high importance for robot manipulation tasks. This work proposed a novel \textbf{S}ingle-\textbf{S}tage \textbf{G}rasp (SSG) synthesis network, which performs high-quality instance-wise grasp synthesis in a single stage: instance mask and grasp configurations are generated for each object simultaneously. Our method outperforms state-of-the-art on robotic grasp prediction based on the OCID-Grasp dataset, and performs competitively on the JACQUARD dataset. The benchmarking results showed significant improvements compared to the baseline on the accuracy of generated grasp configurations. The performance of the proposed method has been validated through both extensive simulations and real robot experiments for three tasks including single object pick-and-place, grasp synthesis in cluttered environments and table cleaning task.
Abstract:This work developed a kernel-based residual learning framework for quadrupedal robotic locomotion. Initially, a kernel neural network is trained with data collected from an MPC controller. Alongside a frozen kernel network, a residual controller network is trained via reinforcement learning to acquire generalized locomotion skills and resilience against external perturbations. With this proposed framework, a robust quadrupedal locomotion controller is learned with high sample efficiency and controllability, providing omnidirectional locomotion at continuous velocities. Its versatility and robustness are validated on unseen terrains that the expert MPC controller fails to traverse. Furthermore, the learned kernel can produce a range of functional locomotion behaviors and can generalize to unseen gaits.
Abstract:The capabilities of a robot will be increased significantly by exploiting throwing behavior. In particular, throwing will enable robots to rapidly place the object into the target basket, located outside its feasible kinematic space, without traveling to the desired location. In previous approaches, the robot often learned a parameterized throwing kernel through analytical approaches, imitation learning, or hand-coding. There are many situations in which such approaches do not work/generalize well due to various object shapes, heterogeneous mass distribution, and also obstacles that might be presented in the environment. It is obvious that a method is needed to modulate the throwing kernel through its meta parameters. In this paper, we tackle object throwing problem through a deep reinforcement learning approach that enables robots to precisely throw objects into moving baskets while there are obstacles obstructing the path. To the best of our knowledge, we are the first group that addresses throwing objects with obstacle avoidance. Such a throwing skill not only increases the physical reachability of a robot arm but also improves the execution time. In particular, the robot detects the pose of the target object, basket, and obstacle at each time step, predicts the proper grasp configuration for the target object, and then infers appropriate parameters to throw the object into the basket. Due to safety constraints, we develop a simulation environment in Gazebo to train the robot and then use the learned policy in real-robot directly. To assess the performers of the proposed approach, we perform extensive sets of experiments in both simulation and real robots in three scenarios. Experimental results showed that the robot could precisely throw a target object into the basket outside its kinematic range and generalize well to new locations and objects without colliding with obstacles.
Abstract:A robot working in human-centric environments needs to know which kind of objects exist in the scene, where they are, and how to grasp and manipulate various objects in different situations to help humans in everyday tasks. Therefore, object recognition and grasping are two key functionalities for such robots. Most state-of-the-art tackles object recognition and grasping as two separate problems while both use visual input. Furthermore, the knowledge of the robot is fixed after the training phase. In such cases, if the robot faces new object categories, it must retrain from scratch to incorporate new information without catastrophic interference. To address this problem, we propose a deep learning architecture with augmented memory capacities to handle open-ended object recognition and grasping simultaneously. In particular, our approach takes multi-views of an object as input and jointly estimates pixel-wise grasp configuration as well as a deep scale- and rotation-invariant representation as outputs. The obtained representation is then used for open-ended object recognition through a meta-active learning technique. We demonstrate the ability of our approach to grasp never-seen-before objects and to rapidly learn new object categories using very few examples on-site in both simulation and real-world settings.
Abstract:This paper proposes a modular framework to generate robust biped locomotion using a tight coupling between an analytical walking approach and deep reinforcement learning. This framework is composed of six main modules which are hierarchically connected to reduce the overall complexity and increase its flexibility. The core of this framework is a specific dynamics model which abstracts a humanoid's dynamics model into two masses for modeling upper and lower body. This dynamics model is used to design an adaptive reference trajectories planner and an optimal controller which are fully parametric. Furthermore, a learning framework is developed based on Genetic Algorithm (GA) and Proximal Policy Optimization (PPO) to find the optimum parameters and to learn how to improve the stability of the robot by moving the arms and changing its center of mass (COM) height. A set of simulations are performed to validate the performance of the framework using the official RoboCup 3D League simulation environment. The results validate the performance of the framework, not only in creating a fast and stable gait but also in learning to improve the upper body efficiency.
Abstract:Nowadays service robots are entering more and more in our daily life. In such a dynamic environment, a robot frequently faces pile, packed, or isolated objects. Therefore, it is necessary for the robot to know how to grasp and manipulate various objects in different situations to help humans in everyday tasks. Most state-of-the-art grasping approaches addressed four degrees-of-freedom (DoF) object grasping, where the robot is forced to grasp objects from above based on grasp synthesis of a given top-down scene. Although such approaches showed a very good performance in predefined industrial settings, they are not suitable for human-centric environments as the robot will not able to grasp a range of household objects robustly, for example, grasping a bottle from above is not stable. In this work, we propose a multi-view deep learning approach to handle robust object grasping in human-centric domains. In particular, our approach takes a partial point cloud of a scene as an input, and then, generates multi-views of existing objects. The obtained views of each object are used to estimate pixel-wise grasp synthesis for each object. To evaluate the performance of the proposed approach, we performed extensive experiments in both simulation and real-world environments within the pile, packed, and isolated objects scenarios. Experimental results showed that our approach can estimate appropriate grasp configurations in only 22ms without the need for explicit collision checking. Therefore, the proposed approach can be used in real-time robotic applications that need closed-loop grasp planning.