Picture for Miguel Abreu

Miguel Abreu

Designing a Skilled Soccer Team for RoboCup: Exploring Skill-Set-Primitives through Reinforcement Learning

Add code
Dec 22, 2023
Viaarxiv icon

Addressing Imperfect Symmetry: a Novel Symmetry-Learning Actor-Critic Extension

Add code
Sep 06, 2023
Viaarxiv icon

Robust Biped Locomotion Using Deep Reinforcement Learning on Top of an Analytical Control Approach

Add code
Apr 21, 2021
Figure 1 for Robust Biped Locomotion Using Deep Reinforcement Learning on Top of an Analytical Control Approach
Figure 2 for Robust Biped Locomotion Using Deep Reinforcement Learning on Top of an Analytical Control Approach
Figure 3 for Robust Biped Locomotion Using Deep Reinforcement Learning on Top of an Analytical Control Approach
Figure 4 for Robust Biped Locomotion Using Deep Reinforcement Learning on Top of an Analytical Control Approach
Viaarxiv icon

A CPG-Based Agile and Versatile Locomotion Framework Using Proximal Symmetry Loss

Add code
Mar 01, 2021
Figure 1 for A CPG-Based Agile and Versatile Locomotion Framework Using Proximal Symmetry Loss
Figure 2 for A CPG-Based Agile and Versatile Locomotion Framework Using Proximal Symmetry Loss
Figure 3 for A CPG-Based Agile and Versatile Locomotion Framework Using Proximal Symmetry Loss
Figure 4 for A CPG-Based Agile and Versatile Locomotion Framework Using Proximal Symmetry Loss
Viaarxiv icon

A Hybrid Biped Stabilizer System Based on Analytical Control and Learning of Symmetrical Residual Physics

Add code
Nov 27, 2020
Figure 1 for A Hybrid Biped Stabilizer System Based on Analytical Control and Learning of Symmetrical Residual Physics
Figure 2 for A Hybrid Biped Stabilizer System Based on Analytical Control and Learning of Symmetrical Residual Physics
Figure 3 for A Hybrid Biped Stabilizer System Based on Analytical Control and Learning of Symmetrical Residual Physics
Figure 4 for A Hybrid Biped Stabilizer System Based on Analytical Control and Learning of Symmetrical Residual Physics
Viaarxiv icon