Abstract:Large Language Models (LLMs) offer significant potential for clinical symptom extraction, but their deployment in healthcare settings is constrained by privacy concerns, computational limitations, and operational costs. This study investigates the optimization of compact LLMs for cancer toxicity symptom extraction using a novel iterative refinement approach. We employ a student-teacher architecture, utilizing Zephyr-7b-beta and Phi3-mini-128 as student models and GPT-4o as the teacher, to dynamically select between prompt refinement, Retrieval-Augmented Generation (RAG), and fine-tuning strategies. Our experiments on 294 clinical notes covering 12 post-radiotherapy toxicity symptoms demonstrate the effectiveness of this approach. The RAG method proved most efficient, improving average accuracy scores from 0.32 to 0.73 for Zephyr-7b-beta and from 0.40 to 0.87 for Phi3-mini-128 during refinement. In the test set, both models showed an approximate 0.20 increase in accuracy across symptoms. Notably, this improvement was achieved at a cost 45 times lower than GPT-4o for Zephyr and 79 times lower for Phi-3. These results highlight the potential of iterative refinement techniques in enhancing the capabilities of compact LLMs for clinical applications, offering a balance between performance, cost-effectiveness, and privacy preservation in healthcare settings.
Abstract:Surface Electromyography (sEMG) is a non-invasive signal that is used in the recognition of hand movement patterns, the diagnosis of diseases, and the robust control of prostheses. Despite the remarkable success of recent end-to-end Deep Learning approaches, they are still limited by the need for large amounts of labeled data. To alleviate the requirement for big data, researchers utilize Feature Engineering, which involves decomposing the sEMG signal into several spatial, temporal, and frequency features. In this paper, we propose utilizing a feature-imitating network (FIN) for closed-form temporal feature learning over a 300ms signal window on Ninapro DB2, and applying it to the task of 17 hand movement recognition. We implement a lightweight LSTM-FIN network to imitate four standard temporal features (entropy, root mean square, variance, simple square integral). We then explore transfer learning capabilities by applying the pre-trained LSTM-FIN for tuning to a downstream hand movement recognition task. We observed that the LSTM network can achieve up to 99\% R2 accuracy in feature reconstruction and 80\% accuracy in hand movement recognition. Our results also showed that the model can be robustly applied for both within- and cross-subject movement recognition, as well as simulated low-latency environments. Overall, our work demonstrates the potential of the FIN modeling paradigm in data-scarce scenarios for sEMG signal processing.
Abstract:This study introduces a novel teacher-student architecture utilizing Large Language Models (LLMs) to improve prostate cancer radiotherapy symptom extraction from clinical notes. Mixtral, the student model, initially extracts symptoms, followed by GPT-4, the teacher model, which refines prompts based on Mixtral's performance. This iterative process involved 294 single symptom clinical notes across 12 symptoms, with up to 16 rounds of refinement per epoch. Results showed significant improvements in extracting symptoms from both single and multi-symptom notes. For 59 single symptom notes, accuracy increased from 0.51 to 0.71, precision from 0.52 to 0.82, recall from 0.52 to 0.72, and F1 score from 0.49 to 0.73. In 375 multi-symptom notes, accuracy rose from 0.24 to 0.43, precision from 0.6 to 0.76, recall from 0.24 to 0.43, and F1 score from 0.20 to 0.44. These results demonstrate the effectiveness of advanced prompt engineering in LLMs for radiation oncology use.
Abstract:Natural Language Processing (NLP) is a key technique for developing Medical Artificial Intelligence (AI) systems that leverage Electronic Health Record (EHR) data to build diagnostic and prognostic models. NLP enables the conversion of unstructured clinical text into structured data that can be fed into AI algorithms. The emergence of the transformer architecture and large language models (LLMs) has led to remarkable advances in NLP for various healthcare tasks, such as entity recognition, relation extraction, sentence similarity, text summarization, and question answering. In this article, we review the major technical innovations that underpin modern NLP models and present state-of-the-art NLP applications that employ LLMs in radiation oncology research. However, these LLMs are prone to many errors such as hallucinations, biases, and ethical violations, which necessitate rigorous evaluation and validation before clinical deployment. As such, we propose a comprehensive framework for assessing the NLP models based on their purpose and clinical fit, technical performance, bias and trust, legal and ethical implications, and quality assurance, prior to implementation in clinical radiation oncology. Our article aims to provide guidance and insights for researchers and clinicians who are interested in developing and using NLP models in clinical radiation oncology.
Abstract:Initialization of neural network weights plays a pivotal role in determining their performance. Feature Imitating Networks (FINs) offer a novel strategy by initializing weights to approximate specific closed-form statistical features, setting a promising foundation for deep learning architectures. While the applicability of FINs has been chiefly tested in biomedical domains, this study extends its exploration into other time series datasets. Three different experiments are conducted in this study to test the applicability of imitating Tsallis entropy for performance enhancement: Bitcoin price prediction, speech emotion recognition, and chronic neck pain detection. For the Bitcoin price prediction, models embedded with FINs reduced the root mean square error by around 1000 compared to the baseline. In the speech emotion recognition task, the FIN-augmented model increased classification accuracy by over 3 percent. Lastly, in the CNP detection experiment, an improvement of about 7 percent was observed compared to established classifiers. These findings validate the broad utility and potency of FINs in diverse applications.
Abstract:In this paper, we present Mambanet: a hybrid neural network for predicting the outcomes of Basketball games. Contrary to other studies, which focus primarily on season games, this study investigates playoff games. MambaNet is a hybrid neural network architecture that processes a time series of teams' and players' game statistics and generates the probability of a team winning or losing an NBA playoff match. In our approach, we utilize Feature Imitating Networks to provide latent signal-processing feature representations of game statistics to further process with convolutional, recurrent, and dense neural layers. Three experiments using six different datasets are conducted to evaluate the performance and generalizability of our architecture against a wide range of previous studies. Our final method successfully predicted the AUC from 0.72 to 0.82, beating the best-performing baseline models by a considerable margin.
Abstract:Electrode "pop" artifacts originate from the spontaneous loss of connectivity between a surface and an electrode. Electroencephalography (EEG) uses a dense array of electrodes, hence "popped" segments are among the most pervasive type of artifact seen during the collection of EEG data. In many cases, the continuity of EEG data is critical for downstream applications (e.g. brain machine interface) and requires that popped segments be accurately interpolated. In this paper we frame the interpolation problem as a self-learning task using a deep encoder-decoder network. We compare our approach against contemporary interpolation methods on a publicly available EEG data set. Our approach exhibited a minimum of ~15% improvement over contemporary approaches when tested on subjects and tasks not used during model training. We demonstrate how our model's performance can be enhanced further on novel subjects and tasks using transfer learning. All code and data associated with this study is open-source to enable ease of extension and practical use. To our knowledge, this work is the first solution to the EEG interpolation problem that uses deep learning.