Abstract:Online Continual Learning (OCL) is a critical area in machine learning, focusing on enabling models to adapt to evolving data streams in real-time while addressing challenges such as catastrophic forgetting and the stability-plasticity trade-off. This study conducts the first comprehensive Systematic Literature Review (SLR) on OCL, analyzing 81 approaches, extracting over 1,000 features (specific tasks addressed by these approaches), and identifying more than 500 components (sub-models within approaches, including algorithms and tools). We also review 83 datasets spanning applications like image classification, object detection, and multimodal vision-language tasks. Our findings highlight key challenges, including reducing computational overhead, developing domain-agnostic solutions, and improving scalability in resource-constrained environments. Furthermore, we identify promising directions for future research, such as leveraging self-supervised learning for multimodal and sequential data, designing adaptive memory mechanisms that integrate sparse retrieval and generative replay, and creating efficient frameworks for real-world applications with noisy or evolving task boundaries. By providing a rigorous and structured synthesis of the current state of OCL, this review offers a valuable resource for advancing this field and addressing its critical challenges and opportunities. The complete SLR methodology steps and extracted data are publicly available through the provided link: https://github.com/kiyan-rezaee/ Systematic-Literature-Review-on-Online-Continual-Learning
Abstract:Context: User intent modeling is a crucial process in Natural Language Processing that aims to identify the underlying purpose behind a user's request, enabling personalized responses. With a vast array of approaches introduced in the literature (over 13,000 papers in the last decade), understanding the related concepts and commonly used models in AI-based systems is essential. Method: We conducted a systematic literature review to gather data on models typically employed in designing conversational recommender systems. From the collected data, we developed a decision model to assist researchers in selecting the most suitable models for their systems. Additionally, we performed two case studies to evaluate the effectiveness of our proposed decision model. Results: Our study analyzed 59 distinct models and identified 74 commonly used features. We provided insights into potential model combinations, trends in model selection, quality concerns, evaluation measures, and frequently used datasets for training and evaluating these models. Contribution: Our study contributes practical insights and a comprehensive understanding of user intent modeling, empowering the development of more effective and personalized conversational recommender systems. With the Conversational Recommender System, researchers can perform a more systematic and efficient assessment of fitting intent modeling frameworks.