Abstract:Simultaneous speech-to-speech translation (S2ST) holds the promise of breaking down communication barriers and enabling fluid conversations across languages. However, achieving accurate, real-time translation through mobile devices remains a major challenge. We introduce SimulTron, a novel S2ST architecture designed to tackle this task. SimulTron is a lightweight direct S2ST model that uses the strengths of the Translatotron framework while incorporating key modifications for streaming operation, and an adjustable fixed delay. Our experiments show that SimulTron surpasses Translatotron 2 in offline evaluations. Furthermore, real-time evaluations reveal that SimulTron improves upon the performance achieved by Translatotron 1. Additionally, SimulTron achieves superior BLEU scores and latency compared to previous real-time S2ST method on the MuST-C dataset. Significantly, we have successfully deployed SimulTron on a Pixel 7 Pro device, show its potential for simultaneous S2ST on-device.
Abstract:We introduce AudioPaLM, a large language model for speech understanding and generation. AudioPaLM fuses text-based and speech-based language models, PaLM-2 [Anil et al., 2023] and AudioLM [Borsos et al., 2022], into a unified multimodal architecture that can process and generate text and speech with applications including speech recognition and speech-to-speech translation. AudioPaLM inherits the capability to preserve paralinguistic information such as speaker identity and intonation from AudioLM and the linguistic knowledge present only in text large language models such as PaLM-2. We demonstrate that initializing AudioPaLM with the weights of a text-only large language model improves speech processing, successfully leveraging the larger quantity of text training data used in pretraining to assist with the speech tasks. The resulting model significantly outperforms existing systems for speech translation tasks and has the ability to perform zero-shot speech-to-text translation for many languages for which input/target language combinations were not seen in training. AudioPaLM also demonstrates features of audio language models, such as transferring a voice across languages based on a short spoken prompt. We release examples of our method at https://google-research.github.io/seanet/audiopalm/examples
Abstract:This paper presents Translatotron 3, a novel approach to train a direct speech-to-speech translation model from monolingual speech-text datasets only in a fully unsupervised manner. Translatotron 3 combines masked autoencoder, unsupervised embedding mapping, and back-translation to achieve this goal. Experimental results in speech-to-speech translation tasks between Spanish and English show that Translatotron 3 outperforms a baseline cascade system, reporting 18.14 BLEU points improvement on the synthesized Unpaired-Conversational dataset. In contrast to supervised approaches that necessitate real paired data, which is unavailable, or specialized modeling to replicate para-/non-linguistic information, Translatotron 3 showcases its capability to retain para-/non-linguistic such as pauses, speaking rates, and speaker identity. Audio samples can be found in our website http://google-research.github.io/lingvo-lab/translatotron3
Abstract:We present SPECTRON, a novel approach to adapting pre-trained language models (LMs) to perform speech continuation. By leveraging pre-trained speech encoders, our model generates both text and speech outputs with the entire system being trained end-to-end operating directly on spectrograms. Training the entire model in the spectrogram domain simplifies our speech continuation system versus existing cascade methods which use discrete speech representations. We further show our method surpasses existing spoken language models both in semantic content and speaker preservation while also benefiting from the knowledge transferred from pre-existing models. Audio samples can be found in our website https://michelleramanovich.github.io/spectron/spectron
Abstract:We introduce CVSS, a massively multilingual-to-English speech-to-speech translation (S2ST) corpus, covering sentence-level parallel S2ST pairs from 21 languages into English. CVSS is derived from the Common Voice speech corpus and the CoVoST 2 speech-to-text translation (ST) corpus, by synthesizing the translation text from CoVoST 2 into speech using state-of-the-art TTS systems. Two versions of translation speeches are provided: 1) CVSS-C: All the translation speeches are in a single high-quality canonical voice; 2) CVSS-T: The translation speeches are in voices transferred from the corresponding source speeches. In addition, CVSS provides normalized translation text which matches the pronunciation in the translation speech. On each version of CVSS, we built baseline multilingual direct S2ST models and cascade S2ST models, verifying the effectiveness of the corpus. To build strong cascade S2ST baselines, we trained an ST model on CoVoST 2, which outperforms the previous state-of-the-art trained on the corpus without extra data by 5.8 BLEU. Nevertheless, the performance of the direct S2ST models approaches the strong cascade baselines when trained from scratch, and with only 0.1 or 0.7 BLEU difference on ASR transcribed translation when initialized from matching ST models.
Abstract:In this paper we present VDTTS, a Visually-Driven Text-to-Speech model. Motivated by dubbing, VDTTS takes advantage of video frames as an additional input alongside text, and generates speech that matches the video signal. We demonstrate how this allows VDTTS to, unlike plain TTS models, generate speech that not only has prosodic variations like natural pauses and pitch, but is also synchronized to the input video. Experimentally, we show our model produces well synchronized outputs, approaching the video-speech synchronization quality of the ground-truth, on several challenging benchmarks including "in-the-wild" content from VoxCeleb2. We encourage the reader to view the demo videos demonstrating video-speech synchronization, robustness to speaker ID swapping, and prosody.
Abstract:We present Translatotron 2, a neural direct speech-to-speech translation model that can be trained end-to-end. Translatotron 2 consists of a speech encoder, a phoneme decoder, a mel-spectrogram synthesizer, and an attention module that connects all the previous three components. Experimental results suggest that Translatotron 2 outperforms the original Translatotron by a large margin in terms of translation quality and predicted speech naturalness, and drastically improves the robustness of the predicted speech by mitigating over-generation, such as babbling or long pause. We also propose a new method for retaining the source speaker's voice in the translated speech. The trained model is restricted to retain the source speaker's voice, and unlike the original Translatotron, it is not able to generate speech in a different speaker's voice, making the model more robust for production deployment, by mitigating potential misuse for creating spoofing audio artifacts. When the new method is used together with a simple concatenation-based data augmentation, the trained Translatotron 2 model is able to retain each speaker's voice for input with speaker turns.