Abstract:Simultaneous speech-to-speech translation (S2ST) holds the promise of breaking down communication barriers and enabling fluid conversations across languages. However, achieving accurate, real-time translation through mobile devices remains a major challenge. We introduce SimulTron, a novel S2ST architecture designed to tackle this task. SimulTron is a lightweight direct S2ST model that uses the strengths of the Translatotron framework while incorporating key modifications for streaming operation, and an adjustable fixed delay. Our experiments show that SimulTron surpasses Translatotron 2 in offline evaluations. Furthermore, real-time evaluations reveal that SimulTron improves upon the performance achieved by Translatotron 1. Additionally, SimulTron achieves superior BLEU scores and latency compared to previous real-time S2ST method on the MuST-C dataset. Significantly, we have successfully deployed SimulTron on a Pixel 7 Pro device, show its potential for simultaneous S2ST on-device.
Abstract:Recently, sequence learning methods have been applied to the problem of off-policy Reinforcement Learning, including the seminal work on Decision Transformers, which employs transformers for this task. Since transformers are parameter-heavy, cannot benefit from history longer than a fixed window size, and are not computed using recurrence, we set out to investigate the suitability of the S4 family of models, which are based on state-space layers and have been shown to outperform transformers, especially in modeling long-range dependencies. In this work we present two main algorithms: (i) an off-policy training procedure that works with trajectories, while still maintaining the training efficiency of the S4 model. (ii) An on-policy training procedure that is trained in a recurrent manner, benefits from long-range dependencies, and is based on a novel stable actor-critic mechanism. Our results indicate that our method outperforms multiple variants of decision transformers, as well as the other baseline methods on most tasks, while reducing the latency, number of parameters, and training time by several orders of magnitude, making our approach more suitable for real-world RL.
Abstract:This paper presents Translatotron 3, a novel approach to train a direct speech-to-speech translation model from monolingual speech-text datasets only in a fully unsupervised manner. Translatotron 3 combines masked autoencoder, unsupervised embedding mapping, and back-translation to achieve this goal. Experimental results in speech-to-speech translation tasks between Spanish and English show that Translatotron 3 outperforms a baseline cascade system, reporting 18.14 BLEU points improvement on the synthesized Unpaired-Conversational dataset. In contrast to supervised approaches that necessitate real paired data, which is unavailable, or specialized modeling to replicate para-/non-linguistic information, Translatotron 3 showcases its capability to retain para-/non-linguistic such as pauses, speaking rates, and speaker identity. Audio samples can be found in our website http://google-research.github.io/lingvo-lab/translatotron3
Abstract:We present SPECTRON, a novel approach to adapting pre-trained language models (LMs) to perform speech continuation. By leveraging pre-trained speech encoders, our model generates both text and speech outputs with the entire system being trained end-to-end operating directly on spectrograms. Training the entire model in the spectrogram domain simplifies our speech continuation system versus existing cascade methods which use discrete speech representations. We further show our method surpasses existing spoken language models both in semantic content and speaker preservation while also benefiting from the knowledge transferred from pre-existing models. Audio samples can be found in our website https://michelleramanovich.github.io/spectron/spectron
Abstract:The problem of speech separation, also known as the cocktail party problem, refers to the task of isolating a single speech signal from a mixture of speech signals. Previous work on source separation derived an upper bound for the source separation task in the domain of human speech. This bound is derived for deterministic models. Recent advancements in generative models challenge this bound. We show how the upper bound can be generalized to the case of random generative models. Applying a diffusion model Vocoder that was pretrained to model single-speaker voices on the output of a deterministic separation model leads to state-of-the-art separation results. It is shown that this requires one to combine the output of the separation model with that of the diffusion model. In our method, a linear combination is performed, in the frequency domain, using weights that are inferred by a learned model. We show state-of-the-art results on 2, 3, 5, 10, and 20 speakers on multiple benchmarks. In particular, for two speakers, our method is able to surpass what was previously considered the upper performance bound.
Abstract:We present a novel way of conditioning a pretrained denoising diffusion speech model to produce speech in the voice of a novel person unseen during training. The method requires a short (~3 seconds) sample from the target person, and generation is steered at inference time, without any training steps. At the heart of the method lies a sampling process that combines the estimation of the denoising model with a low-pass version of the new speaker's sample. The objective and subjective evaluations show that our sampling method can generate a voice similar to that of the target speaker in terms of frequency, with an accuracy comparable to state-of-the-art methods, and without training.
Abstract:The problem of maximum likelihood decoding with a neural decoder for error-correcting code is considered. It is shown that the neural decoder can be improved with two novel loss terms on the node's activations. The first loss term imposes a sparse constraint on the node's activations. Whereas, the second loss term tried to mimic the node's activations from a teacher decoder which has better performance. The proposed method has the same run time complexity and model size as the neural Belief Propagation decoder, while improving the decoding performance by up to $1.1dB$ on BCH codes.
Abstract:We present an upper bound for the Single Channel Speech Separation task, which is based on an assumption regarding the nature of short segments of speech. Using the bound, we are able to show that while the recent methods have made significant progress for a few speakers, there is room for improvement for five and ten speakers. We then introduce a Deep neural network, SepIt, that iteratively improves the different speakers' estimation. At test time, SpeIt has a varying number of iterations per test sample, based on a mutual information criterion that arises from our analysis. In an extensive set of experiments, SepIt outperforms the state-of-the-art neural networks for 2, 3, 5, and 10 speakers.
Abstract:While the availability of massive Text-Image datasets is shown to be extremely useful in training large-scale generative models (e.g. DDPMs, Transformers), their output typically depends on the quality of both the input text, as well as the training dataset. In this work, we show how large-scale retrieval methods, in particular efficient K-Nearest-Neighbors (KNN) search, can be used in order to train a model to adapt to new samples. Learning to adapt enables several new capabilities. Sifting through billions of records at inference time is extremely efficient and can alleviate the need to train or memorize an adequately large generative model. Additionally, fine-tuning trained models to new samples can be achieved by simply adding them to the table. Rare concepts, even without any presence in the training set, can be then leveraged during test time without any modification to the generative model. Our diffusion-based model trains on images only, by leveraging a joint Text-Image multi-modal metric. Compared to baseline methods, our generations achieve state of the art results both in human evaluations as well as with perceptual scores when tested on a public multimodal dataset of natural images, as well as on a collected dataset of 400 million Stickers.
Abstract:Diffusion Probabilistic Methods are employed for state-of-the-art image generation. In this work, we present a method for extending such models for performing image segmentation. The method learns end-to-end, without relying on a pre-trained backbone. The information in the input image and in the current estimation of the segmentation map is merged by summing the output of two encoders. Additional encoding layers and a decoder are then used to iteratively refine the segmentation map using a diffusion model. Since the diffusion model is probabilistic, it is applied multiple times and the results are merged into a final segmentation map. The new method obtains state-of-the-art results on the Cityscapes validation set, the Vaihingen building segmentation benchmark, and the MoNuSeg dataset.