Abstract:Reconfigurable Intelligent Surfaces (RISs) pose as a transformative technology to revolutionize the cellular architecture of Next Generation (NextG) Radio Access Networks (RANs). Previous studies have demonstrated the capabilities of RISs in optimizing wireless propagation, achieving high spectral efficiency, and improving resource utilization. At the same time, the transition to softwarized, disaggregated, and virtualized architectures, such as those being standardized by the O-RAN ALLIANCE, enables the vision of a reconfigurable Open RAN. In this work, we aim to integrate these technologies by studying how different resource allocation policies enhance the performance of RIS-assisted Open RANs. We perform a comparative analysis among various network configurations and show how proper network optimization can enhance the performance across the Enhanced Mobile Broadband (eMBB) and Ultra Reliable and Low Latency Communications (URLLC) network slices, achieving up to ~34% throughput improvement. Furthermore, leveraging the capabilities of OpenRAN Gym, we deploy an xApp on Colosseum, the world's largest wireless system emulator with hardware-in-the-loop, to control the Base Station (BS)'s scheduling policy. Experimental results demonstrate that RIS-assisted topologies achieve high resource efficiency and low latency, regardless of the BS's scheduling policy.
Abstract:Non-terrestrial networks (NTNs) are essential for ubiquitous connectivity, providing coverage in remote and underserved areas. However, since NTNs are currently operated independently, they face challenges such as isolation, limited scalability, and high operational costs. Integrating satellite constellations with terrestrial networks offers a way to address these limitations while enabling adaptive and cost-efficient connectivity through the application of Artificial Intelligence (AI) models. This paper introduces Space-O-RAN, a framework that extends Open Radio Access Network (RAN) principles to NTNs. It employs hierarchical closed-loop control with distributed Space RAN Intelligent Controllers (Space-RICs) to dynamically manage and optimize operations across both domains. To enable adaptive resource allocation and network orchestration, the proposed architecture integrates real-time satellite optimization and control with AI-driven management and digital twin (DT) modeling. It incorporates distributed Space Applications (sApps) and dApps to ensure robust performance in in highly dynamic orbital environments. A core feature is dynamic link-interface mapping, which allows network functions to adapt to specific application requirements and changing link conditions using all physical links on the satellite. Simulation results evaluate its feasibility by analyzing latency constraints across different NTN link types, demonstrating that intra-cluster coordination operates within viable signaling delay bounds, while offloading non-real-time tasks to ground infrastructure enhances scalability toward sixth-generation (6G) networks.
Abstract:The development of 6G wireless technologies is rapidly advancing, with the 3rd Generation Partnership Project (3GPP) entering the pre-standardization phase and aiming to deliver the first specifications by 2028. This paper explores the OpenAirInterface (OAI) project, an open-source initiative that plays a crucial role in the evolution of 5G and the future 6G networks. OAI provides a comprehensive implementation of 3GPP and O-RAN compliant networks, including Radio Access Network (RAN), Core Network (CN), and software-defined User Equipment (UE) components. The paper details the history and evolution of OAI, its licensing model, and the various projects under its umbrella, such as RAN, the CN, as well as the Operations, Administration and Maintenance (OAM) projects. It also highlights the development methodology, Continuous Integration/Continuous Delivery (CI/CD) processes, and end-to-end systems powered by OAI. Furthermore, the paper discusses the potential of OAI for 6G research, focusing on spectrum, reflective intelligent surfaces, and Artificial Intelligence (AI)/Machine Learning (ML) integration. The open-source approach of OAI is emphasized as essential for tackling the challenges of 6G, fostering community collaboration, and driving innovation in next-generation wireless technologies.
Abstract:5G and beyond cellular systems embrace the disaggregation of Radio Access Network (RAN) components, exemplified by the evolution of the fronthual (FH) connection between cellular baseband and radio unit equipment. Crucially, synchronization over the FH is pivotal for reliable 5G services. In recent years, there has been a push to move these links to an Ethernet-based packet network topology, leveraging existing standards and ongoing research for Time-Sensitive Networking (TSN). However, TSN standards, such as Precision Time Protocol (PTP), focus on performance with little to no concern for security. This increases the exposure of the open FH to security risks. Attacks targeting synchronization mechanisms pose significant threats, potentially disrupting 5G networks and impairing connectivity. In this paper, we demonstrate the impact of successful spoofing and replay attacks against PTP synchronization. We show how a spoofing attack is able to cause a production-ready O-RAN and 5G-compliant private cellular base station to catastrophically fail within 2 seconds of the attack, necessitating manual intervention to restore full network operations. To counter this, we design a Machine Learning (ML)-based monitoring solution capable of detecting various malicious attacks with over 97.5% accuracy.
Abstract:This demo paper presents a dApp-based real-time spectrum sharing scenario where a 5th generation (5G) base station implementing the NR stack adapts its transmission and reception strategies based on the incumbent priority users in the Citizen Broadband Radio Service (CBRS) band. The dApp is responsible for obtaining relevant measurements from the Next Generation Node Base (gNB), running the spectrum sensing inference, and configuring the gNB with a control action upon detecting the primary incumbent user transmissions. This approach is built on dApps, which extend the O-RAN framework to the real-time and user plane domains. Thus, it avoids the need of dedicated Spectrum Access Systems (SASs) in the CBRS band. The demonstration setup is based on the open-source 5G OpenAirInterface (OAI) framework, where we have implemented a dApp interfaced with a gNB and communicating with a Commercial Off-the-Shelf (COTS) User Equipment (UE) in an over-the-air wireless environment. When an incumbent user has active transmission, the dApp will detect and inform the primary user presence to the gNB. The dApps will also enforce a control policy that adapts the scheduling and transmission policy of the Radio Access Network (RAN). This demo provides valuable insights into the potential of using dApp-based spectrum sensing with O-RAN architecture in next generation cellular networks.
Abstract:Digital twins are now a staple of wireless networks design and evolution. Creating an accurate digital copy of a real system offers numerous opportunities to study and analyze its performance and issues. It also allows designing and testing new solutions in a risk-free environment, and applying them back to the real system after validation. A candidate technology that will heavily rely on digital twins for design and deployment is 6G, which promises robust and ubiquitous networks for eXtended Reality (XR) and immersive communications solutions. In this paper, we present BostonTwin, a dataset that merges a high-fidelity 3D model of the city of Boston, MA, with the existing geospatial data on cellular base stations deployments, in a ray-tracing-ready format. Thus, BostonTwin enables not only the instantaneous rendering and programmatic access to the building models, but it also allows for an accurate representation of the electromagnetic propagation environment in the real-world city of Boston. The level of detail and accuracy of this characterization is crucial to designing 6G networks that can support the strict requirements of sensitive and high-bandwidth applications, such as XR and immersive communication.
Abstract:Innovation and standardization in 5G have brought advancements to every facet of the cellular architecture. This ranges from the introduction of new frequency bands and signaling technologies for the radio access network (RAN), to a core network underpinned by micro-services and network function virtualization (NFV). However, like any emerging technology, the pace of real-world deployments does not instantly match the pace of innovation. To address this discrepancy, one of the key aspects under continuous development is the RAN with the aim of making it more open, adaptive, functional, and easy to manage. In this paper, we highlight the transformative potential of embracing novel cellular architectures by transitioning from conventional systems to the progressive principles of Open RAN. This promises to make 6G networks more agile, cost-effective, energy-efficient, and resilient. It opens up a plethora of novel use cases, ranging from ubiquitous support for autonomous devices to cost-effective expansions in regions previously underserved. The principles of Open RAN encompass: (i) a disaggregated architecture with modular and standardized interfaces; (ii) cloudification, programmability and orchestration; and (iii) AI-enabled data-centric closed-loop control and automation. We first discuss the transformative role Open RAN principles have played in the 5G era. Then, we adopt a system-level approach and describe how these Open RAN principles will support 6G RAN and architecture innovation. We qualitatively discuss potential performance gains that Open RAN principles yield for specific 6G use cases. For each principle, we outline the steps that research, development and standardization communities ought to take to make Open RAN principles central to next-generation cellular network designs.
Abstract:The highly heterogeneous ecosystem of Next Generation (NextG) wireless communication systems calls for novel networking paradigms where functionalities and operations can be dynamically and optimally reconfigured in real time to adapt to changing traffic conditions and satisfy stringent and diverse Quality of Service (QoS) demands. Open Radio Access Network (RAN) technologies, and specifically those being standardized by the O-RAN Alliance, make it possible to integrate network intelligence into the once monolithic RAN via intelligent applications, namely, xApps and rApps. These applications enable flexible control of the network resources and functionalities, network management, and orchestration through data-driven control loops. Despite recent work demonstrating the effectiveness of Deep Reinforcement Learning (DRL) in controlling O-RAN systems, how to design these solutions in a way that does not create conflicts and unfair resource allocation policies is still an open challenge. In this paper, we perform a comparative analysis where we dissect the impact of different DRL-based xApp designs on network performance. Specifically, we benchmark 12 different xApps that embed DRL agents trained using different reward functions, with different action spaces and with the ability to hierarchically control different network parameters. We prototype and evaluate these xApps on Colosseum, the world's largest O-RAN-compliant wireless network emulator with hardware-in-the-loop. We share the lessons learned and discuss our experimental results, which demonstrate how certain design choices deliver the highest performance while others might result in a competitive behavior between different classes of traffic with similar objectives.
Abstract:Future wireless networks and sensing systems will benefit from access to large chunks of spectrum above 100 GHz, to achieve terabit-per-second data rates in 6th Generation (6G) cellular systems and improve accuracy and reach of Earth exploration and sensing and radio astronomy applications. These are extremely sensitive to interference from artificial signals, thus the spectrum above 100 GHz features several bands which are protected from active transmissions under current spectrum regulations. To provide more agile access to the spectrum for both services, active and passive users will have to coexist without harming passive sensing operations. In this paper, we provide the first, fundamental analysis of Radio Frequency Interference (RFI) that large-scale terrestrial deployments introduce in different satellite sensing systems now orbiting the Earth. We develop a geometry-based analysis and extend it into a data-driven model which accounts for realistic propagation, building obstruction, ground reflection, for network topology with up to $10^5$ nodes in more than $85$ km$^2$. We show that the presence of harmful RFI depends on several factors, including network load, density and topology, satellite orientation, and building density. The results and methodology provide the foundation for the development of coexistence solutions and spectrum policy towards 6G.
Abstract:The Open Radio Access Network (RAN) is a networking paradigm that builds on top of cloud-based, multi-vendor, open and intelligent architectures to shape the next generation of cellular networks for 5G and beyond. While this new paradigm comes with many advantages in terms of observatibility and reconfigurability of the network, it inevitably expands the threat surface of cellular systems and can potentially expose its components to several cyber attacks, thus making securing O-RAN networks a necessity. In this paper, we explore the security aspects of O-RAN systems by focusing on the specifications and architectures proposed by the O-RAN Alliance. We address the problem of securing O-RAN systems with an holistic perspective, including considerations on the open interfaces used to interconnect the different O-RAN components, on the overall platform, and on the intelligence used to monitor and control the network. For each focus area we identify threats, discuss relevant solutions to address these issues, and demonstrate experimentally how such solutions can effectively defend O-RAN systems against selected cyber attacks. This article is the first work in approaching the security aspect of O-RAN holistically and with experimental evidence obtained on a state-of-the-art programmable O-RAN platform, thus providing unique guideline for researchers in the field.