Abstract:This demo paper presents a dApp-based real-time spectrum sharing scenario where a 5th generation (5G) base station implementing the NR stack adapts its transmission and reception strategies based on the incumbent priority users in the Citizen Broadband Radio Service (CBRS) band. The dApp is responsible for obtaining relevant measurements from the Next Generation Node Base (gNB), running the spectrum sensing inference, and configuring the gNB with a control action upon detecting the primary incumbent user transmissions. This approach is built on dApps, which extend the O-RAN framework to the real-time and user plane domains. Thus, it avoids the need of dedicated Spectrum Access Systems (SASs) in the CBRS band. The demonstration setup is based on the open-source 5G OpenAirInterface (OAI) framework, where we have implemented a dApp interfaced with a gNB and communicating with a Commercial Off-the-Shelf (COTS) User Equipment (UE) in an over-the-air wireless environment. When an incumbent user has active transmission, the dApp will detect and inform the primary user presence to the gNB. The dApps will also enforce a control policy that adapts the scheduling and transmission policy of the Radio Access Network (RAN). This demo provides valuable insights into the potential of using dApp-based spectrum sensing with O-RAN architecture in next generation cellular networks.
Abstract:The ever-growing number of wireless communication devices and technologies demands spectrum-sharing techniques. Effective coexistence management is crucial to avoid harmful interference, especially with critical systems like nautical and aerial radars in which incumbent radios operate mission-critical communication links. In this demo, we showcase a framework that leverages Colosseum, the world's largest wireless network emulator with hardware-in-the-loop, as a playground to study commercial radar waveforms coexisting with a cellular network in CBRS band in complex environments. We create an ad-hoc high-fidelity spectrum-sharing scenario for this purpose. We deploy a cellular network to collect IQ samples with the aim of training an ML agent that runs at the base station. The agent has the goal of detecting incumbent radar transmissions and vacating the cellular bandwidth to avoid interfering with the radar operations. Our experiment results show an average detection accuracy of 88%, with an average detection time of 137 ms.
Abstract:The highly heterogeneous ecosystem of Next Generation (NextG) wireless communication systems calls for novel networking paradigms where functionalities and operations can be dynamically and optimally reconfigured in real time to adapt to changing traffic conditions and satisfy stringent and diverse Quality of Service (QoS) demands. Open Radio Access Network (RAN) technologies, and specifically those being standardized by the O-RAN Alliance, make it possible to integrate network intelligence into the once monolithic RAN via intelligent applications, namely, xApps and rApps. These applications enable flexible control of the network resources and functionalities, network management, and orchestration through data-driven control loops. Despite recent work demonstrating the effectiveness of Deep Reinforcement Learning (DRL) in controlling O-RAN systems, how to design these solutions in a way that does not create conflicts and unfair resource allocation policies is still an open challenge. In this paper, we perform a comparative analysis where we dissect the impact of different DRL-based xApp designs on network performance. Specifically, we benchmark 12 different xApps that embed DRL agents trained using different reward functions, with different action spaces and with the ability to hierarchically control different network parameters. We prototype and evaluate these xApps on Colosseum, the world's largest O-RAN-compliant wireless network emulator with hardware-in-the-loop. We share the lessons learned and discuss our experimental results, which demonstrate how certain design choices deliver the highest performance while others might result in a competitive behavior between different classes of traffic with similar objectives.
Abstract:Because of the ever-growing amount of wireless consumers, spectrum-sharing techniques have been increasingly common in the wireless ecosystem, with the main goal of avoiding harmful interference to coexisting communication systems. This is even more important when considering systems, such as nautical and aerial fleet radars, in which incumbent radios operate mission-critical communication links. To study, develop, and validate these solutions, adequate platforms, such as the Colosseum wireless network emulator, are key as they enable experimentation with spectrum-sharing heterogeneous radio technologies in controlled environments. In this work, we demonstrate how Colosseum can be used to twin commercial radio waveforms to evaluate the coexistence of such technologies in complex wireless propagation environments. To this aim, we create a high-fidelity spectrum-sharing scenario on Colosseum to evaluate the impact of twinned commercial radar waveforms on a cellular network operating in the CBRS band. Then, we leverage IQ samples collected on the testbed to train a machine learning agent that runs at the base station to detect the presence of incumbent radar transmissions and vacate the bandwidth to avoid causing them harmful interference. Our results show an average detection accuracy of 88%, with accuracy above 90% in SNR regimes above 0 dB and SINR regimes above -20 dB, and with an average detection time of 137 ms.
Abstract:The Open Radio Access Network (RAN) is a networking paradigm that builds on top of cloud-based, multi-vendor, open and intelligent architectures to shape the next generation of cellular networks for 5G and beyond. While this new paradigm comes with many advantages in terms of observatibility and reconfigurability of the network, it inevitably expands the threat surface of cellular systems and can potentially expose its components to several cyber attacks, thus making securing O-RAN networks a necessity. In this paper, we explore the security aspects of O-RAN systems by focusing on the specifications and architectures proposed by the O-RAN Alliance. We address the problem of securing O-RAN systems with an holistic perspective, including considerations on the open interfaces used to interconnect the different O-RAN components, on the overall platform, and on the intelligence used to monitor and control the network. For each focus area we identify threats, discuss relevant solutions to address these issues, and demonstrate experimentally how such solutions can effectively defend O-RAN systems against selected cyber attacks. This article is the first work in approaching the security aspect of O-RAN holistically and with experimental evidence obtained on a state-of-the-art programmable O-RAN platform, thus providing unique guideline for researchers in the field.
Abstract:Wireless network emulators are being increasingly used for developing and evaluating new solutions for Next Generation (NextG) wireless networks. However, the reliability of the solutions tested on emulation platforms heavily depends on the precision of the emulation process, model design, and parameter settings. To address, obviate or minimize the impact of errors of emulation models, in this work we apply the concept of Digital Twin (DT) to large-scale wireless systems. Specifically, we demonstrate the use of Colosseum, the world's largest wireless network emulator with hardware-in-the-loop, as a DT for NextG experimental wireless research at scale. As proof of concept, we leverage the Channel emulation scenario generator and Sounder Toolchain (CaST) to create the DT of a publicly-available over-the-air indoor testbed for sub-6 GHz research, namely, Arena. Then, we validate the Colosseum DT through experimental campaigns on emulated wireless environments, including scenarios concerning cellular networks and jamming of Wi-Fi nodes, on both the real and digital systems. Our experiments show that the DT is able to provide a faithful representation of the real-world setup, obtaining an average accuracy of up to 92.5% in throughput and 80% in Signal to Interference plus Noise Ratio (SINR).
Abstract:Softwarization, programmable network control and the use of all-encompassing controllers acting at different timescales are heralded as the key drivers for the evolution to next-generation cellular networks. These technologies have fostered newly designed intelligent data-driven solutions for managing large sets of diverse cellular functionalities, basically impossible to implement in traditionally closed cellular architectures. Despite the evident interest of industry on Artificial Intelligence (AI) and Machine Learning (ML) solutions for closed-loop control of the Radio Access Network (RAN), and several research works in the field, their design is far from mainstream, and it is still a sophisticated and often overlooked operation. In this paper, we discuss how to design AI/ML solutions for the intelligent closed-loop control of the Open RAN, providing guidelines and insights based on exemplary solutions with high-performance record. We then show how to embed these solutions into xApps instantiated on the O-RAN near-real-time RAN Intelligent Controller (RIC) through OpenRAN Gym, the first publicly available toolbox for data-driven O-RAN experimentation at scale. We showcase a use case of an xApp developed with OpenRAN Gym and tested on a cellular network with 7 base stations and 42 users deployed on the Colosseum wireless network emulator. Our demonstration shows the high degree of flexibility of the OpenRAN Gym-based xApp development environment, which is independent of deployment scenarios and traffic demand.
Abstract:Open Radio Access Network (RAN) architectures will enable interoperability, openness and programmable data-driven control in next generation cellular networks. However, developing and testing efficient solutions that generalize across heterogeneous cellular deployments and scales, and that optimize network performance in such diverse environments is a complex task that is still largely unexplored. In this paper we present OpenRAN Gym, a unified, open, and O-RAN-compliant experimental toolbox for data collection, design, prototyping and testing of end-to-end data-driven control solutions for next generation Open RAN systems. OpenRAN Gym extends and combines into a unique solution several software frameworks for data collection of RAN statistics and RAN control, and a lightweight O-RAN near-real-time RAN Intelligent Controller (RIC) tailored to run on experimental wireless platforms. We first provide an overview of the various architectural components of OpenRAN Gym and describe how it is used to collect data and design, train and test artificial intelligence and machine learning O-RAN-compliant applications (xApps) at scale. We then describe in detail how to test the developed xApps on softwarized RANs and provide an example of two xApps developed with OpenRAN Gym that are used to control a network with 7 base stations and 42 users deployed on the Colosseum testbed. Finally, we show how solutions developed with OpenRAN Gym on Colosseum can be exported to real-world, heterogeneous wireless platforms, such as the Arena testbed and the POWDER and COSMOS platforms of the PAWR program. OpenRAN Gym and its software components are open-source and publicly-available to the research community.
Abstract:Open Radio Access Network (RAN) and its embodiment through the O-RAN Alliance specifications have the potential to truly transform the telecom ecosystem. O-RAN promotes virtualized and disaggregated RANs, where disaggregated components are connected via open interfaces and optimized by intelligent controllers. The result is a new paradigm for the RAN design, deployment, and operations: O-RAN networks can be built with multi-vendor, interoperable components, and can be programmatically optimized through a centralized abstraction layer and data-driven closed-loop control. Therefore, understanding O-RAN, its architecture, its interfaces, and workflows is key for researchers and practitioners in the wireless community. In this article, we present the first detailed tutorial on O-RAN. We also discuss the main research challenges and review early results. We provide a deep dive on the O-RAN specifications, describing its architecture, design principles, and the O-RAN interfaces. We then describe how the O-RAN RAN Intelligent Controllers (RICs) can be used to effectively control and manage 3GPP-defined RANs. Based on this, we discuss innovations and challenges that relate to O-RAN networks, including the Artificial Intelligence (AI) and Machine Learning (ML) workflows that the architecture and interfaces enable, and security and standardization issues. Finally, we review experimental research platforms that can be used to design and test O-RAN networks, along with recent research results, and we outline future directions for O-RAN development.
Abstract:The next generation of cellular networks will be characterized by softwarized, open, and disaggregated architectures exposing analytics and control knobs to enable network intelligence. How to realize this vision, however, is largely an open problem. In this paper, we take a decisive step forward by presenting and prototyping OrchestRAN, a novel orchestration framework that embraces and builds upon the Open RAN paradigm to provide a practical solution to these challenges. OrchestRAN has been designed to execute in the non-real-time RAN Intelligent Controller (RIC) and allows Network Operators (NOs) to specify high-level control/inference objectives (i.e., adapt scheduling, and forecast capacity in near-real-time for a set of base stations in Downtown New York). OrchestRAN automatically computes the optimal set of data-driven algorithms and their execution location to achieve intents specified by the NOs while meeting the desired timing requirements. We show that the problem of orchestrating intelligence in Open RAN is NP-hard, and design low-complexity solutions to support real-world applications. We prototype OrchestRAN and test it at scale on Colosseum. Our experimental results on a network with 7 base stations and 42 users demonstrate that OrchestRAN is able to instantiate data-driven services on demand with minimal control overhead and latency.