Abstract:Non-terrestrial networks (NTNs) are essential for ubiquitous connectivity, providing coverage in remote and underserved areas. However, since NTNs are currently operated independently, they face challenges such as isolation, limited scalability, and high operational costs. Integrating satellite constellations with terrestrial networks offers a way to address these limitations while enabling adaptive and cost-efficient connectivity through the application of Artificial Intelligence (AI) models. This paper introduces Space-O-RAN, a framework that extends Open Radio Access Network (RAN) principles to NTNs. It employs hierarchical closed-loop control with distributed Space RAN Intelligent Controllers (Space-RICs) to dynamically manage and optimize operations across both domains. To enable adaptive resource allocation and network orchestration, the proposed architecture integrates real-time satellite optimization and control with AI-driven management and digital twin (DT) modeling. It incorporates distributed Space Applications (sApps) and dApps to ensure robust performance in in highly dynamic orbital environments. A core feature is dynamic link-interface mapping, which allows network functions to adapt to specific application requirements and changing link conditions using all physical links on the satellite. Simulation results evaluate its feasibility by analyzing latency constraints across different NTN link types, demonstrating that intra-cluster coordination operates within viable signaling delay bounds, while offloading non-real-time tasks to ground infrastructure enhances scalability toward sixth-generation (6G) networks.
Abstract:The use of multimedia content has hugely increased in recent times, becoming one of the most important services for the users of mobile networks. Consequently, network operators struggle to optimize their infrastructure to support the best video service-provision. As an additional challenge, 5G introduces the concept of network slicing as a new paradigm that presents a completely different view of the network configuration and optimization. A main challenge of this scheme is to establish which specific resources would provide the necessary quality of service for the users using the slice. To address this, the present work presents a complete framework for this support of the slice negotiation process through the estimation of the provided Video Streaming Key Quality Indicators (KQIs), which are calculated from network low-layer configuration parameters and metrics. The proposed estimator is then evaluated in a real cellular scenario.