Abstract:Liver allograft failure occurs in approximately 20% of liver transplant recipients within five years post-transplant, leading to mortality or the need for retransplantation. Providing an accurate and interpretable model for individualized risk estimation of graft failure is essential for improving post-transplant care. To this end, we introduce the Model for Allograft Survival (MAS), a simple linear risk score that outperforms other advanced survival models. Using longitudinal patient follow-up data from the United States (U.S.), we develop our models on 82,959 liver transplant recipients and conduct multi-site evaluations on 11 regions. Additionally, by testing on a separate non-U.S. cohort, we explore the out-of-distribution generalization performance of various models without additional fine-tuning, a crucial property for clinical deployment. We find that the most complex models are also the ones most vulnerable to distribution shifts despite achieving the best in-distribution performance. Our findings not only provide a strong risk score for predicting long-term graft failure but also suggest that the routine machine learning pipeline with only in-distribution held-out validation could create harmful consequences for patients at deployment.
Abstract:Tabular data are omnipresent in various sectors of industries. Neural networks for tabular data such as TabNet have been proposed to make predictions while leveraging the attention mechanism for interpretability. However, the inferred attention masks are often dense, making it challenging to come up with rationales about the predictive signal. To remedy this, we propose InterpreTabNet, a variant of the TabNet model that models the attention mechanism as a latent variable sampled from a Gumbel-Softmax distribution. This enables us to regularize the model to learn distinct concepts in the attention masks via a KL Divergence regularizer. It prevents overlapping feature selection by promoting sparsity which maximizes the model's efficacy and improves interpretability to determine the important features when predicting the outcome. To assist in the interpretation of feature interdependencies from our model, we employ a large language model (GPT-4) and use prompt engineering to map from the learned feature mask onto natural language text describing the learned signal. Through comprehensive experiments on real-world datasets, we demonstrate that InterpreTabNet outperforms previous methods for interpreting tabular data while attaining competitive accuracy.
Abstract:A survival dataset describes a set of instances (e.g. patients) and provides, for each, either the time until an event (e.g. death), or the censoring time (e.g. when lost to follow-up - which is a lower bound on the time until the event). We consider the challenge of survival prediction: learning, from such data, a predictive model that can produce an individual survival distribution for a novel instance. Many contemporary methods of survival prediction implicitly assume that the event and censoring distributions are independent conditional on the instance's covariates - a strong assumption that is difficult to verify (as we observe only one outcome for each instance) and which can induce significant bias when it does not hold. This paper presents a parametric model of survival that extends modern non-linear survival analysis by relaxing the assumption of conditional independence. On synthetic and semi-synthetic data, our approach significantly improves estimates of survival distributions compared to the standard that assumes conditional independence in the data.
Abstract:Predicting which words are considered hard to understand for a given target population is a vital step in many NLP applications such as text simplification. This task is commonly referred to as Complex Word Identification (CWI). With a few exceptions, previous studies have approached the task as a binary classification task in which systems predict a complexity value (complex vs. non-complex) for a set of target words in a text. This choice is motivated by the fact that all CWI datasets compiled so far have been annotated using a binary annotation scheme. Our paper addresses this limitation by presenting the first English dataset for continuous lexical complexity prediction. We use a 5-point Likert scale scheme to annotate complex words in texts from three sources/domains: the Bible, Europarl, and biomedical texts. This resulted in a corpus of 9,476 sentences each annotated by around 7 annotators.