Abstract:Heterogeneous robot teams used in marine environments incur time-and-energy penalties when the marine vehicle has to halt the mission to allow the autonomous aerial vehicle to land for recharging. In this paper, we present a solution for this problem using a novel drag-aware model formulation which is coupled with MPC, and therefore, enables tracking and landing during high-speed curvilinear trajectories of an USV without any communication. Compared to the state-of-the-art, our approach yields 40% decrease in prediction errors, and provides a 3-fold increase in certainty of predictions. Consequently, this leads to a 30% improvement in tracking performance and 40% higher success in landing on a moving USV even during aggressive turns that are unfeasible for conventional marine missions. We test our approach in two different real-world scenarios with marine vessels of two different sizes and further solidify our results through statistical analysis in simulation to demonstrate the robustness of our method.
Abstract:Robotic simulators play a crucial role in the development and testing of autonomous systems, particularly in the realm of Uncrewed Aerial Vehicles (UAV). However, existing simulators often lack high-level autonomy, hindering their immediate applicability to complex tasks such as autonomous navigation in unknown environments. This limitation stems from the challenge of integrating realistic physics, photorealistic rendering, and diverse sensor modalities into a single simulation environment. At the same time, the existing photorealistic UAV simulators use mostly hand-crafted environments with limited environment sizes, which prevents the testing of long-range missions. This restricts the usage of existing simulators to only low-level tasks such as control and collision avoidance. To this end, we propose the novel FlightForge UAV open-source simulator. FlightForge offers advanced rendering capabilities, diverse control modalities, and, foremost, procedural generation of environments. Moreover, the simulator is already integrated with a fully autonomous UAV system capable of long-range flights in cluttered unknown environments. The key innovation lies in novel procedural environment generation and seamless integration of high-level autonomy into the simulation environment. Experimental results demonstrate superior sensor rendering capability compared to existing simulators, and also the ability of autonomous navigation in almost infinite environments.
Abstract:A novel onboard tracking approach enabling vision-based relative localization and communication using Active blinking Marker Tracking (AMT) is introduced in this article. Active blinking markers on multi-robot team members improve the robustness of relative localization for aerial vehicles in tightly coupled swarms during real-world deployments, while also serving as a resilient communication channel. Traditional tracking algorithms struggle to track fast moving blinking markers due to their intermittent appearance in the camera frames. AMT addresses this by using weighted polynomial regression to predict the future appearance of active blinking markers while accounting for uncertainty in the prediction. In outdoor experiments, the AMT approach outperformed state-of-the-art methods in tracking density, accuracy, and complexity. The experimental validation of this novel tracking approach for relative localization involved testing motion patterns motivated by our research on agile multi-robot deployment.
Abstract:This paper proposes a novel trajectory generation method based on Model Predictive Control (MPC) for agile landing of an Unmanned Aerial Vehicle (UAV) onto an Unmanned Surface Vehicle (USV)'s deck in harsh conditions. The trajectory generation exploits the state predictions of the USV to create periodically updated trajectories for a multirotor UAV to precisely land on the deck of a moving USV even in cases where the deck's inclination is continuously changing. We use an MPC-based scheme to create trajectories that consider both the UAV dynamics and the predicted states of the USV up to the first derivative of position and orientation. Compared to existing approaches, our method dynamically modifies the penalization matrices to precisely follow the corresponding states with respect to the flight phase. Especially during the landing maneuver, the UAV synchronizes attitude with the USV's, allowing for fast landing on a tilted deck. Simulations show the method's reliability in various sea conditions up to Rough sea (wave height 4 m), outperforming state-of-the-art methods in landing speed and accuracy, with twice the precision on average. Finally, real-world experiments validate the simulation results, demonstrating robust landings on a moving USV, while all computations are performed in real-time onboard the UAV.
Abstract:In this work, we propose a minimalistic swarm flocking approach for multirotor unmanned aerial vehicles (UAVs). Our approach allows the swarm to achieve cohesively and aligned flocking (collective motion), in a random direction, without externally provided directional information exchange (alignment control). The method relies on minimalistic sensory requirements as it uses only the relative range and bearing of swarm agents in local proximity obtained through onboard sensors on the UAV. Thus, our method is able to stabilize and control the flock of a general shape above a steep terrain without any explicit communication between swarm members. To implement proximal control in a three-dimensional manner, the Lennard-Jones potential function is used to maintain cohesiveness and avoid collisions between robots. The performance of the proposed approach was tested in real-world conditions by experiments with a team of nine UAVs. Experiments also present the usage of our approach on UAVs that are independent of external positioning systems such as the Global Navigation Satellite System (GNSS). Relying only on a relative visual localization through the ultraviolet direction and ranging (UVDAR) system, previously proposed by our group, the experiments verify that our system can be applied in GNSS-denied environments. The degree achieved of alignment and cohesiveness was evaluated using the metrics of order and steady-state value.
Abstract:This paper addresses the problem of thrust estimation and control for the rotors of small-sized multirotors Uncrewed Aerial Vehicles (UAVs). Accurate control of the thrust generated by each rotor during flight is one of the main challenges for robust control of quadrotors. The most common approach is to approximate the mapping of rotor speed to thrust with a simple quadratic model. This model is known to fail under non-hovering flight conditions, introducing errors into the control pipeline. One of the approaches to modeling the aerodynamics around the propellers is the Blade Element Momentum Theory (BEMT). Here, we propose a novel BEMT-based closed-loop thrust estimator and control to eliminate the laborious calibration step of finding several aerodynamic coefficients. We aim to reuse known values as a baseline and fit the thrust estimate to values closest to the real ones with a simple test bench experiment, resulting in a single scaling value. A feedforward PID thrust control was implemented for each rotor, and the methods were validated by outdoor experiments with two multirotor UAV platforms: 250mm and 500mm. A statistical analysis of the results showed that the thrust estimation and control provided better robustness under aerodynamically varying flight conditions compared to the quadratic model.
Abstract:The human-robot interaction (HRI) is a growing area of research. In HRI, complex command (action) classification is still an open problem that usually prevents the real applicability of such a technique. The literature presents some works that use neural networks to detect these actions. However, occlusion is still a major issue in HRI, especially when using uncrewed aerial vehicles (UAVs), since, during the robot's movement, the human operator is often out of the robot's field of view. Furthermore, in multi-robot scenarios, distributed training is also an open problem. In this sense, this work proposes an action recognition and control approach based on Long Short-Term Memory (LSTM) Deep Neural Networks with two layers in association with three densely connected layers and Federated Learning (FL) embedded in multiple drones. The FL enabled our approach to be trained in a distributed fashion, i.e., access to data without the need for cloud or other repositories, which facilitates the multi-robot system's learning. Furthermore, our multi-robot approach results also prevented occlusion situations, with experiments with real robots achieving an accuracy greater than 96%.
Abstract:We propose a new approach to visual perception for relative localization of agents within large-scale swarms of UAVs. Inspired by biological perception utilized by schools of sardines, swarms of bees, and other large groups of animals capable of moving in a decentralized yet coherent manner, our method does not rely on detecting individual neighbors by each agent and estimating their relative position, but rather we propose to regress a neighbor density over distance. This allows for a more accurate distance estimation as well as better scalability with respect to the number of neighbors. Additionally, a novel swarm control algorithm is proposed to make it compatible with the new relative localization method. We provide a thorough evaluation of the presented methods and demonstrate that the regressing approach to distance estimation is more robust to varying relative pose of the targets and that it is suitable to be used as the main source of relative localization for swarm stabilization.
Abstract:In this paper, we introduce an algorithm designed to address the problem of time-optimal formation reshaping in three-dimensional environments while preventing collisions between agents. The utility of the proposed approach is particularly evident in mobile robotics, where agents benefit from being organized and navigated in formation for a variety of real-world applications requiring frequent alterations in formation shape for efficient navigation or task completion. Given the constrained operational time inherent to battery-powered mobile robots, the time needed to complete the formation reshaping process is crucial for their efficient operation, especially in case of multi-rotor Unmanned Aerial Vehicles (UAVs). The proposed Collision-Aware Time-Optimal formation Reshaping Algorithm (CAT-ORA) builds upon the Hungarian algorithm for the solution of the robot-to-goal assignment implementing the inter-agent collision avoidance through direct constraints on mutually exclusive robot-goal pairs combined with a trajectory generation approach minimizing the duration of the reshaping process. Theoretical validations confirm the optimality of CAT-ORA, with its efficacy further showcased through simulations, and a real-world outdoor experiment involving 19 UAVs. Thorough numerical analysis shows the potential of CAT-ORA to decrease the time required to perform complex formation reshaping tasks by up to 49%, and 12% on average compared to commonly used methods in randomly generated scenarios.
Abstract:A new class of Multi-Rotor Aerial Vehicles (MRAVs), known as omnidirectional MRAVs (o-MRAVs), has attracted significant interest in the robotics community. These MRAVs have the unique capability of independently controlling their 3D position and 3D orientation. In the context of aerial communication networks, this translates into the ability to control the position and orientation of the antenna mounted on the MRAV without any additional devices tasked for antenna orientation. This additional Degrees of Freedom (DoF) adds a new dimension to aerial communication systems, creating various research opportunities in communications-aware trajectory planning and positioning. This paper presents this new class of MRAVs and discusses use cases in areas such as physical layer security and optical communications. Furthermore, the benefits of these MRAVs are illustrated with realistic simulation scenarios. Finally, new research problems and opportunities introduced by this advanced robotics technology are discussed.