Abstract:This paper proposes a novel trajectory generation method based on Model Predictive Control (MPC) for agile landing of an Unmanned Aerial Vehicle (UAV) onto an Unmanned Surface Vehicle (USV)'s deck in harsh conditions. The trajectory generation exploits the state predictions of the USV to create periodically updated trajectories for a multirotor UAV to precisely land on the deck of a moving USV even in cases where the deck's inclination is continuously changing. We use an MPC-based scheme to create trajectories that consider both the UAV dynamics and the predicted states of the USV up to the first derivative of position and orientation. Compared to existing approaches, our method dynamically modifies the penalization matrices to precisely follow the corresponding states with respect to the flight phase. Especially during the landing maneuver, the UAV synchronizes attitude with the USV's, allowing for fast landing on a tilted deck. Simulations show the method's reliability in various sea conditions up to Rough sea (wave height 4 m), outperforming state-of-the-art methods in landing speed and accuracy, with twice the precision on average. Finally, real-world experiments validate the simulation results, demonstrating robust landings on a moving USV, while all computations are performed in real-time onboard the UAV.
Abstract:We propose a new approach to visual perception for relative localization of agents within large-scale swarms of UAVs. Inspired by biological perception utilized by schools of sardines, swarms of bees, and other large groups of animals capable of moving in a decentralized yet coherent manner, our method does not rely on detecting individual neighbors by each agent and estimating their relative position, but rather we propose to regress a neighbor density over distance. This allows for a more accurate distance estimation as well as better scalability with respect to the number of neighbors. Additionally, a novel swarm control algorithm is proposed to make it compatible with the new relative localization method. We provide a thorough evaluation of the presented methods and demonstrate that the regressing approach to distance estimation is more robust to varying relative pose of the targets and that it is suitable to be used as the main source of relative localization for swarm stabilization.
Abstract:The human-robot interaction (HRI) is a growing area of research. In HRI, complex command (action) classification is still an open problem that usually prevents the real applicability of such a technique. The literature presents some works that use neural networks to detect these actions. However, occlusion is still a major issue in HRI, especially when using uncrewed aerial vehicles (UAVs), since, during the robot's movement, the human operator is often out of the robot's field of view. Furthermore, in multi-robot scenarios, distributed training is also an open problem. In this sense, this work proposes an action recognition and control approach based on Long Short-Term Memory (LSTM) Deep Neural Networks with two layers in association with three densely connected layers and Federated Learning (FL) embedded in multiple drones. The FL enabled our approach to be trained in a distributed fashion, i.e., access to data without the need for cloud or other repositories, which facilitates the multi-robot system's learning. Furthermore, our multi-robot approach results also prevented occlusion situations, with experiments with real robots achieving an accuracy greater than 96%.
Abstract:In this work, we propose a minimalistic swarm flocking approach for multirotor unmanned aerial vehicles (UAVs). Our approach allows the swarm to achieve cohesively and aligned flocking (collective motion), in a random direction, without externally provided directional information exchange (alignment control). The method relies on minimalistic sensory requirements as it uses only the relative range and bearing of swarm agents in local proximity obtained through onboard sensors on the UAV. Thus, our method is able to stabilize and control the flock of a general shape above a steep terrain without any explicit communication between swarm members. To implement proximal control in a three-dimensional manner, the Lennard-Jones potential function is used to maintain cohesiveness and avoid collisions between robots. The performance of the proposed approach was tested in real-world conditions by experiments with a team of nine UAVs. Experiments also present the usage of our approach on UAVs that are independent of external positioning systems such as the Global Navigation Satellite System (GNSS). Relying only on a relative visual localization through the ultraviolet direction and ranging (UVDAR) system, previously proposed by our group, the experiments verify that our system can be applied in GNSS-denied environments. The degree achieved of alignment and cohesiveness was evaluated using the metrics of order and steady-state value.
Abstract:This paper addresses the problem of thrust estimation and control for the rotors of small-sized multirotors Uncrewed Aerial Vehicles (UAVs). Accurate control of the thrust generated by each rotor during flight is one of the main challenges for robust control of quadrotors. The most common approach is to approximate the mapping of rotor speed to thrust with a simple quadratic model. This model is known to fail under non-hovering flight conditions, introducing errors into the control pipeline. One of the approaches to modeling the aerodynamics around the propellers is the Blade Element Momentum Theory (BEMT). Here, we propose a novel BEMT-based closed-loop thrust estimator and control to eliminate the laborious calibration step of finding several aerodynamic coefficients. We aim to reuse known values as a baseline and fit the thrust estimate to values closest to the real ones with a simple test bench experiment, resulting in a single scaling value. A feedforward PID thrust control was implemented for each rotor, and the methods were validated by outdoor experiments with two multirotor UAV platforms: 250mm and 500mm. A statistical analysis of the results showed that the thrust estimation and control provided better robustness under aerodynamically varying flight conditions compared to the quadratic model.
Abstract:In this paper, we introduce an algorithm designed to address the problem of time-optimal formation reshaping in three-dimensional environments while preventing collisions between agents. The utility of the proposed approach is particularly evident in mobile robotics, where agents benefit from being organized and navigated in formation for a variety of real-world applications requiring frequent alterations in formation shape for efficient navigation or task completion. Given the constrained operational time inherent to battery-powered mobile robots, the time needed to complete the formation reshaping process is crucial for their efficient operation, especially in case of multi-rotor Unmanned Aerial Vehicles (UAVs). The proposed Collision-Aware Time-Optimal formation Reshaping Algorithm (CAT-ORA) builds upon the Hungarian algorithm for the solution of the robot-to-goal assignment implementing the inter-agent collision avoidance through direct constraints on mutually exclusive robot-goal pairs combined with a trajectory generation approach minimizing the duration of the reshaping process. Theoretical validations confirm the optimality of CAT-ORA, with its efficacy further showcased through simulations, and a real-world outdoor experiment involving 19 UAVs. Thorough numerical analysis shows the potential of CAT-ORA to decrease the time required to perform complex formation reshaping tasks by up to 49%, and 12% on average compared to commonly used methods in randomly generated scenarios.
Abstract:A new class of Multi-Rotor Aerial Vehicles (MRAVs), known as omnidirectional MRAVs (o-MRAVs), has attracted significant interest in the robotics community. These MRAVs have the unique capability of independently controlling their 3D position and 3D orientation. In the context of aerial communication networks, this translates into the ability to control the position and orientation of the antenna mounted on the MRAV without any additional devices tasked for antenna orientation. This additional Degrees of Freedom (DoF) adds a new dimension to aerial communication systems, creating various research opportunities in communications-aware trajectory planning and positioning. This paper presents this new class of MRAVs and discusses use cases in areas such as physical layer security and optical communications. Furthermore, the benefits of these MRAVs are illustrated with realistic simulation scenarios. Finally, new research problems and opportunities introduced by this advanced robotics technology are discussed.
Abstract:This paper presents a method for task allocation and trajectory generation in cooperative inspection missions using a fleet of multirotor drones, with a focus on wind turbine inspection. The approach generates safe, feasible flight paths that adhere to time-sensitive constraints and vehicle limitations by formulating an optimization problem based on Signal Temporal Logic (STL) specifications. An event-triggered replanning mechanism addresses unexpected events and delays, while a generalized robustness scoring method incorporates user preferences and minimizes task conflicts. The approach is validated through simulations in MATLAB and Gazebo, as well as field experiments in a mock-up scenario.
Abstract:A novel method for autonomous localization of multiple sources of gamma radiation using a group of Micro Aerial Vehicles (MAVs) is presented in this paper. The method utilizes an extremely lightweight (44 g) Compton camera MiniPIX TPX3. The compact size of the detector allows for deployment onboard safe and agile small-scale Unmanned Aerial Vehicles (UAVs). The proposed radiation mapping approach fuses measurements from multiple distributed Compton camera sensors to accurately estimate the positions of multiple radioactive sources in real time. Unlike commonly used intensity-based detectors, the Compton camera reconstructs the set of possible directions towards a radiation source from just a single ionizing particle. Therefore, the proposed approach can localize radiation sources without having to estimate the gradient of a radiation field or contour lines, which require longer measurements. The instant estimation is able to fully exploit the potential of highly mobile MAVs. The radiation mapping method is combined with an active search strategy, which coordinates the future actions of the MAVs in order to improve the quality of the estimate of the sources' positions, as well as to explore the area of interest faster. The proposed solution is evaluated in simulation and real world experiments with multiple Cesium-137 radiation sources.
Abstract:A novel approach for robust state estimation of marine vessels in rough water is proposed in this paper to enable tight collaboration between Unmanned Aerial Vehicles (UAVs) and a marine vessel, such as cooperative landing or object manipulation, regardless of weather conditions. Our study of marine vessel (in our case Unmanned Surface Vehicle (USV)) dynamics influenced by strong wave motion has resulted in a novel nonlinear mathematical USV model with 6 degrees of freedom (DOFs), which is required for precise USV state estimation and motion prediction. The proposed state estimation approach fuses data from multiple sensors onboard the UAV and the USV to enable redundancy and robustness under varying weather conditions of real-world applications. The proposed approach provides estimated states of the USV with 6 DOFs and predicts its future states to enable tight control of both vehicles on a receding control horizon. The proposed approach was extensively tested in the realistic Gazebo simulator and successfully experimentally validated in many real-world experiments representing different application scenarios, including agile landing on an oscillating and moving USV. A comparative study indicates that the proposed approach significantly surpassed the current state-of-the-art.