Abstract:Repeated exploration of a water surface to detect objects of interest and their subsequent monitoring is important in search-and-rescue or ocean clean-up operations. Since the location of any detected object is dynamic, we propose to address the combined surface exploration and monitoring of the detected objects by modeling spatio-temporal reward states and coordinating a team of vehicles to collect the rewards. The model characterizes the dynamics of the water surface and enables the planner to predict future system states. The state reward value relevant to the particular water surface cell increases over time and is nullified by being in a sensor range of a vehicle. Thus, the proposed multi-vehicle planning approach is to minimize the collective value of the dynamic model reward states. The purpose is to address vehicles' motion constraints by using model predictive control on receding horizon, thus fully exploiting the utilized vehicles' motion capabilities. Based on the evaluation results, the approach indicates improvement in a solution to the kinematic orienteering problem and the team orienteering problem in the monitoring task compared to the existing solutions. The proposed approach has been experimentally verified, supporting its feasibility in real-world monitoring tasks.
Abstract:This paper concerns fault-tolerant power transmission line inspection planning as a generalization of the multiple traveling salesmen problem. The addressed inspection planning problem is formulated as a single-depot multiple-vehicle scenario, where the inspection vehicles are constrained by the battery budget limiting their inspection time. The inspection vehicle is assumed to be an autonomous multi-copter with a wide range of possible flight speeds influencing battery consumption. The inspection plan is represented by multiple routes for vehicles providing full coverage over inspection target power lines. On an inspection vehicle mission interruption, which might happen at any time during the execution of the inspection plan, the inspection is re-planned using the remaining vehicles and their remaining battery budgets. Robustness is introduced by choosing a suitable cost function for the initial plan that maximizes the time window for successful re-planning. It enables the remaining vehicles to successfully finish all the inspection targets using their respective remaining battery budgets. A combinatorial metaheuristic algorithm with various cost functions is used for planning and fast re-planning during the inspection.
Abstract:This letter concerns optimal power transmission line inspection formulated as a proposed generalization of the traveling salesman problem for a multi-route one-depot scenario. The problem is formulated for an inspection vehicle with a limited travel budget. Therefore, the solution can be composed of multiple runs to provide full coverage of the given power lines. Besides, the solution indicates how many vehicles can perform the inspection in a single run. The optimal solution of the problem is solved by the proposed Integer Linear Programming (ILP) formulation, which is, however, very computationally demanding. Therefore, the computational requirements are addressed by the combinatorial metaheuristic. The employed greedy randomized adaptive search procedure is significantly less demanding while providing competitive solutions and scales better with the problem size than the ILP-based approach. The proposed formulation and algorithms are demonstrated in a real-world scenario to inspect power line segments at the electrical substation.