Abstract:A novel approach for robust state estimation of marine vessels in rough water is proposed in this paper to enable tight collaboration between Unmanned Aerial Vehicles (UAVs) and a marine vessel, such as cooperative landing or object manipulation, regardless of weather conditions. Our study of marine vessel (in our case Unmanned Surface Vehicle (USV)) dynamics influenced by strong wave motion has resulted in a novel nonlinear mathematical USV model with 6 degrees of freedom (DOFs), which is required for precise USV state estimation and motion prediction. The proposed state estimation approach fuses data from multiple sensors onboard the UAV and the USV to enable redundancy and robustness under varying weather conditions of real-world applications. The proposed approach provides estimated states of the USV with 6 DOFs and predicts its future states to enable tight control of both vehicles on a receding control horizon. The proposed approach was extensively tested in the realistic Gazebo simulator and successfully experimentally validated in many real-world experiments representing different application scenarios, including agile landing on an oscillating and moving USV. A comparative study indicates that the proposed approach significantly surpassed the current state-of-the-art.
Abstract:A novel approach for achieving fast evasion in self-localized swarms of Unmanned Aerial Vehicles (UAVs) threatened by an intruding moving object is presented in this paper. Motivated by natural self-organizing systems, the presented approach of fast and collective evasion enables the UAV swarm to avoid dynamic objects (interferers) that are actively approaching the group. The main objective of the proposed technique is the fast and safe escape of the swarm from an interferer ~discovered in proximity. This method is inspired by the collective behavior of groups of certain animals, such as schools of fish or flocks of birds. These animals use the limited information of their sensing organs and decentralized control to achieve reliable and effective group motion. The system presented in this paper is intended to execute the safe coordination of UAV swarms with a large number of agents. Similar to natural swarms, this system propagates a fast shock of information about detected interferers throughout the group to achieve dynamic and collective evasion. The proposed system is fully decentralized using only onboard sensors to mutually localize swarm agents and interferers, similar to how animals accomplish this behavior. As a result, the communication structure between swarm agents is not overwhelmed by information about the state (position and velocity) of each individual and it is reliable to communication dropouts. The proposed system and theory were numerically evaluated and verified in real-world experiments.
Abstract:This paper introduces a system designed for tight collaboration between Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs) in harsh maritime conditions characterized by large waves. This onboard UAV system aims to enhance collaboration with USVs for following and landing tasks under such challenging conditions. The main contribution of our system is the novel mathematical USV model, describing the movement of the USV in 6 degrees of freedom on a wavy water surface, which is used to estimate and predict USV states. The estimator fuses data from multiple global and onboard sensors, ensuring accurate USV state estimation. The predictor computes future USV states using the novel mathematical USV model and the last estimated states. The estimated and predicted USV states are forwarded into a trajectory planner that generates a UAV trajectory for following the USV or landing on its deck, even in harsh environmental conditions. The proposed approach was verified in numerous simulations and deployed to the real world, where the UAV was able to follow the USV and land on its deck repeatedly.
Abstract:This paper introduces an innovative methodology for object manipulation on the surface of water through the collaboration of an Unmanned Aerial Vehicle (UAV) and an Unmanned Surface Vehicle (USV) connected to the object by tethers. We propose a novel mathematical model of a robotic system that combines the UAV, USV, and the tethered floating object. A novel Model Predictive Control (MPC) framework is designed for using this model to achieve precise control and guidance for this collaborative robotic system. Extensive simulations in the realistic robotic simulator Gazebo demonstrate the system's readiness for real-world deployment, highlighting its versatility and effectiveness. Our multi-robot system overcomes the state-of-the-art single-robot approach, exhibiting smaller control errors during the tracking of the floating object's reference. Additionally, our multi-robot system demonstrates a shorter recovery time from a disturbance compared to the single-robot approach.