Abstract:Stereotypical bias encoded in language models (LMs) poses a threat to safe language technology, yet our understanding of how bias manifests in the parameters of LMs remains incomplete. We introduce local contrastive editing that enables the localization and editing of a subset of weights in a target model in relation to a reference model. We deploy this approach to identify and modify subsets of weights that are associated with gender stereotypes in LMs. Through a series of experiments, we demonstrate that local contrastive editing can precisely localize and control a small subset (< 0.5%) of weights that encode gender bias. Our work (i) advances our understanding of how stereotypical biases can manifest in the parameter space of LMs and (ii) opens up new avenues for developing parameter-efficient strategies for controlling model properties in a contrastive manner.
Abstract:This paper proposes temporally aligned Large Language Models (LLMs) as a tool for longitudinal analysis of social media data. We fine-tune Temporal Adapters for Llama 3 8B on full timelines from a panel of British Twitter users, and extract longitudinal aggregates of emotions and attitudes with established questionnaires. We validate our estimates against representative British survey data and find strong positive, significant correlations for several collective emotions. The obtained estimates are robust across multiple training seeds and prompt formulations, and in line with collective emotions extracted using a traditional classification model trained on labeled data. To the best of our knowledge, this is the first work to extend the analysis of affect in LLMs to a longitudinal setting through Temporal Adapters. Our work enables new approaches towards the longitudinal analysis of social media data.
Abstract:Measuring the similarity of different representations of neural architectures is a fundamental task and an open research challenge for the machine learning community. This paper presents the first comprehensive benchmark for evaluating representational similarity measures based on well-defined groundings of similarity. The representational similarity (ReSi) benchmark consists of (i) six carefully designed tests for similarity measures, (ii) 23 similarity measures, (iii) eleven neural network architectures, and (iv) six datasets, spanning over the graph, language, and vision domains. The benchmark opens up several important avenues of research on representational similarity that enable novel explorations and applications of neural architectures. We demonstrate the utility of the ReSi benchmark by conducting experiments on various neural network architectures, real world datasets and similarity measures. All components of the benchmark are publicly available and thereby facilitate systematic reproduction and production of research results. The benchmark is extensible, future research can build on and further expand it. We believe that the ReSi benchmark can serve as a sound platform catalyzing future research that aims to systematically evaluate existing and explore novel ways of comparing representations of neural architectures.
Abstract:In social recommender systems, it is crucial that the recommendation models provide equitable visibility for different demographic groups, such as gender or race. Most existing research has addressed this problem by only studying individual static snapshots of networks that typically change over time. To address this gap, we study the evolution of recommendation fairness over time and its relation to dynamic network properties. We examine three real-world dynamic networks by evaluating the fairness of six recommendation algorithms and analyzing the association between fairness and network properties over time. We further study how interventions on network properties influence fairness by examining counterfactual scenarios with alternative evolution outcomes and differing network properties. Our results on empirical datasets suggest that recommendation fairness improves over time, regardless of the recommendation method. We also find that two network properties, minority ratio, and homophily ratio, exhibit stable correlations with fairness over time. Our counterfactual study further suggests that an extreme homophily ratio potentially contributes to unfair recommendations even with a balanced minority ratio. Our work provides insights into the evolution of fairness within dynamic networks in social science. We believe that our findings will help system operators and policymakers to better comprehend the implications of temporal changes and interventions targeting fairness in social networks.
Abstract:Measuring similarity of neural networks has become an issue of great importance and research interest to understand and utilize differences of neural networks. While there are several perspectives on how neural networks can be similar, we specifically focus on two complementing perspectives, i.e., (i) representational similarity, which considers how activations of intermediate neural layers differ, and (ii) functional similarity, which considers how models differ in their outputs. In this survey, we provide a comprehensive overview of these two families of similarity measures for neural network models. In addition to providing detailed descriptions of existing measures, we summarize and discuss results on the properties and relationships of these measures, and point to open research problems. Further, we provide practical recommendations that can guide researchers as well as practitioners in applying the measures. We hope our work lays a foundation for our community to engage in more systematic research on the properties, nature and applicability of similarity measures for neural network models.
Abstract:Wikipedia is one of the most successful collaborative projects in history. It is the largest encyclopedia ever created, with millions of users worldwide relying on it as the first source of information as well as for fact-checking and in-depth research. As Wikipedia relies solely on the efforts of its volunteer-editors, its success might be particularly affected by toxic speech. In this paper, we analyze all 57 million comments made on user talk pages of 8.5 million editors across the six most active language editions of Wikipedia to study the potential impact of toxicity on editors' behaviour. We find that toxic comments consistently reduce the activity of editors, leading to an estimated loss of 0.5-2 active days per user in the short term. This amounts to multiple human-years of lost productivity when considering the number of active contributors to Wikipedia. The effects of toxic comments are even greater in the long term, as they significantly increase the risk of editors leaving the project altogether. Using an agent-based model, we demonstrate that toxicity attacks on Wikipedia have the potential to impede the progress of the entire project. Our results underscore the importance of mitigating toxic speech on collaborative platforms such as Wikipedia to ensure their continued success.
Abstract:Adding interpretability to word embeddings represents an area of active research in text representation. Recent work has explored thepotential of embedding words via so-called polar dimensions (e.g. good vs. bad, correct vs. wrong). Examples of such recent approaches include SemAxis, POLAR, FrameAxis, and BiImp. Although these approaches provide interpretable dimensions for words, they have not been designed to deal with polysemy, i.e. they can not easily distinguish between different senses of words. To address this limitation, we present SensePOLAR, an extension of the original POLAR framework that enables word-sense aware interpretability for pre-trained contextual word embeddings. The resulting interpretable word embeddings achieve a level of performance that is comparable to original contextual word embeddings across a variety of natural language processing tasks including the GLUE and SQuAD benchmarks. Our work removes a fundamental limitation of existing approaches by offering users sense aware interpretations for contextual word embeddings.
Abstract:In recent years, several metrics have been developed for evaluating group fairness of rankings. Given that these metrics were developed with different application contexts and ranking algorithms in mind, it is not straightforward which metric to choose for a given scenario. In this paper, we perform a comprehensive comparative analysis of existing group fairness metrics developed in the context of fair ranking. By virtue of their diverse application contexts, we argue that such a comparative analysis is not straightforward. Hence, we take an axiomatic approach whereby we design a set of thirteen properties for group fairness metrics that consider different ranking settings. A metric can then be selected depending on whether it satisfies all or a subset of these properties. We apply these properties on eleven existing group fairness metrics, and through both empirical and theoretical results we demonstrate that most of these metrics only satisfy a small subset of the proposed properties. These findings highlight limitations of existing metrics, and provide insights into how to evaluate and interpret different fairness metrics in practical deployment. The proposed properties can also assist practitioners in selecting appropriate metrics for evaluating fairness in a specific application.
Abstract:We present evidence for the existence and effectiveness of adversarial attacks on graph neural networks (GNNs) that aim to degrade fairness. These attacks can disadvantage a particular subgroup of nodes in GNN-based node classification, where nodes of the underlying network have sensitive attributes, such as race or gender. We conduct qualitative and experimental analyses explaining how adversarial link injection impairs the fairness of GNN predictions. For example, an attacker can compromise the fairness of GNN-based node classification by injecting adversarial links between nodes belonging to opposite subgroups and opposite class labels. Our experiments on empirical datasets demonstrate that adversarial fairness attacks can significantly degrade the fairness of GNN predictions (attacks are effective) with a low perturbation rate (attacks are efficient) and without a significant drop in accuracy (attacks are deceptive). This work demonstrates the vulnerability of GNN models to adversarial fairness attacks. We hope our findings raise awareness about this issue in our community and lay a foundation for the future development of GNN models that are more robust to such attacks.
Abstract:In this chapter, we provide an overview of recent advances in data-driven and theory-informed complex models of social networks and their potential in understanding societal inequalities and marginalization. We focus on inequalities arising from networks and network-based algorithms and how they affect minorities. In particular, we examine how homophily and mixing biases shape large and small social networks, influence perception of minorities, and affect collaboration patterns. We also discuss dynamical processes on and of networks and the formation of norms and health inequalities. Additionally, we argue that network modeling is paramount for unveiling the effect of ranking and social recommendation algorithms on the visibility of minorities. Finally, we highlight the key challenges and future opportunities in this emerging research topic.