Abstract:Understanding information from a collection of multiple documents, particularly those with visually rich elements, is important for document-grounded question answering. This paper introduces VisDoMBench, the first comprehensive benchmark designed to evaluate QA systems in multi-document settings with rich multimodal content, including tables, charts, and presentation slides. We propose VisDoMRAG, a novel multimodal Retrieval Augmented Generation (RAG) approach that simultaneously utilizes visual and textual RAG, combining robust visual retrieval capabilities with sophisticated linguistic reasoning. VisDoMRAG employs a multi-step reasoning process encompassing evidence curation and chain-of-thought reasoning for concurrent textual and visual RAG pipelines. A key novelty of VisDoMRAG is its consistency-constrained modality fusion mechanism, which aligns the reasoning processes across modalities at inference time to produce a coherent final answer. This leads to enhanced accuracy in scenarios where critical information is distributed across modalities and improved answer verifiability through implicit context attribution. Through extensive experiments involving open-source and proprietary large language models, we benchmark state-of-the-art document QA methods on VisDoMBench. Extensive results show that VisDoMRAG outperforms unimodal and long-context LLM baselines for end-to-end multimodal document QA by 12-20%.
Abstract:With the emergence of the Metaverse and focus on wearable devices in the recent years gesture based human-computer interaction has gained significance. To enable gesture recognition for VR/AR headsets and glasses several datasets focusing on egocentric i.e. first-person view have emerged in recent years. However, standard frame-based vision suffers from limitations in data bandwidth requirements as well as ability to capture fast motions. To overcome these limitation bio-inspired approaches such as event-based cameras present an attractive alternative. In this work, we present the first event-camera based egocentric gesture dataset for enabling neuromorphic, low-power solutions for XR-centric gesture recognition. The dataset has been made available publicly at the following URL: https://gitlab.com/NVM_IITD_Research/xrage.
Abstract:Document structure editing involves manipulating localized textual, visual, and layout components in document images based on the user's requests. Past works have shown that multimodal grounding of user requests in the document image and identifying the accurate structural components and their associated attributes remain key challenges for this task. To address these, we introduce the DocEdit-v2, a novel framework that performs end-to-end document editing by leveraging Large Multimodal Models (LMMs). It consists of three novel components: (1) Doc2Command, which simultaneously localizes edit regions of interest (RoI) and disambiguates user edit requests into edit commands; (2) LLM-based Command Reformulation prompting to tailor edit commands originally intended for specialized software into edit instructions suitable for generalist LMMs. (3) Moreover, DocEdit-v2 processes these outputs via Large Multimodal Models like GPT-4V and Gemini, to parse the document layout, execute edits on grounded Region of Interest (RoI), and generate the edited document image. Extensive experiments on the DocEdit dataset show that DocEdit-v2 significantly outperforms strong baselines on edit command generation (2-33%), RoI bounding box detection (12-31%), and overall document editing (1-12\%) tasks.
Abstract:This technical report investigates the application of event-based vision sensors in non-invasive qualitative vibration analysis, with a particular focus on frequency measurement and motion magnification. Event cameras, with their high temporal resolution and dynamic range, offer promising capabilities for real-time structural assessment and subtle motion analysis. Our study employs cutting-edge event-based vision techniques to explore real-world scenarios in frequency measurement in vibrational analysis and intensity reconstruction for motion magnification. In the former, event-based sensors demonstrated significant potential for real-time structural assessment. However, our work in motion magnification revealed considerable challenges, particularly in scenarios involving stationary cameras and isolated motion.
Abstract:The use of Deep Learning techniques for classification in Hyperspectral Imaging (HSI) is rapidly growing and achieving improved performances. Due to the nature of the data captured by sensors that produce HSI images, a common issue is the dimensionality of the bands that may or may not contribute to the label class distinction. Due to the widespread nature of class labels, Principal Component Analysis is a common method used for reducing the dimensionality. However,there may exist methods that incorporate all bands of the Hyperspectral image with the help of the Attention mechanism. Furthermore, to yield better spectral spatial feature extraction, recent methods have also explored the usage of Graph Convolution Networks and their unique ability to use node features in prediction, which is akin to the pixel spectral makeup. In this survey we present a comprehensive summary of Graph based and Attention based methods to perform Hyperspectral Image Classification for remote sensing and aerial HSI images. We also summarize relevant datasets on which these techniques have been evaluated and benchmark the processing techniques.
Abstract:Complex Named Entity Recognition (NER) is the task of detecting linguistically complex named entities in low-context text. In this paper, we present ACLM Attention-map aware keyword selection for Conditional Language Model fine-tuning), a novel data augmentation approach based on conditional generation to address the data scarcity problem in low-resource complex NER. ACLM alleviates the context-entity mismatch issue, a problem existing NER data augmentation techniques suffer from and often generates incoherent augmentations by placing complex named entities in the wrong context. ACLM builds on BART and is optimized on a novel text reconstruction or denoising task - we use selective masking (aided by attention maps) to retain the named entities and certain keywords in the input sentence that provide contextually relevant additional knowledge or hints about the named entities. Compared with other data augmentation strategies, ACLM can generate more diverse and coherent augmentations preserving the true word sense of complex entities in the sentence. We demonstrate the effectiveness of ACLM both qualitatively and quantitatively on monolingual, cross-lingual, and multilingual complex NER across various low-resource settings. ACLM outperforms all our neural baselines by a significant margin (1%-36%). In addition, we demonstrate the application of ACLM to other domains that suffer from data scarcity (e.g., biomedical). In practice, ACLM generates more effective and factual augmentations for these domains than prior methods. Code: https://github.com/Sreyan88/ACLM
Abstract:Understanding the representations of different languages in multilingual language models is essential for comprehending their cross-lingual properties, predicting their performance on downstream tasks, and identifying any biases across languages. In our study, we analyze the geometry of three multilingual language models in Euclidean space and find that all languages are represented by unique geometries. Using a geometric separability index we find that although languages tend to be closer according to their linguistic family, they are almost separable with languages from other families. We also introduce a Cross-Lingual Similarity Index to measure the distance of languages with each other in the semantic space. Our findings indicate that the low-resource languages are not represented as good as high resource languages in any of the models
Abstract:The tremendous growth of social media users interacting in online conversations has also led to significant growth in hate speech. Most of the prior works focus on detecting explicit hate speech, which is overt and leverages hateful phrases, with very little work focusing on detecting hate speech that is implicit or denotes hatred through indirect or coded language. In this paper, we present CoSyn, a user- and conversational-context synergized network for detecting implicit hate speech in online conversation trees. CoSyn first models the user's personal historical and social context using a novel hyperbolic Fourier attention mechanism and hyperbolic graph convolution network. Next, we jointly model the user's personal context and the conversational context using a novel context interaction mechanism in the hyperbolic space that clearly captures the interplay between the two and makes independent assessments on the amounts of information to be retrieved from both contexts. CoSyn performs all operations in the hyperbolic space to account for the scale-free dynamics of social media. We demonstrate the effectiveness of CoSyn both qualitatively and quantitatively on an open-source hate speech dataset with Twitter conversations and show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 8.15% - 19.50%.
Abstract:Intimacy is an essential element of human relationships and language is a crucial means of conveying it. Textual intimacy analysis can reveal social norms in different contexts and serve as a benchmark for testing computational models' ability to understand social information. In this paper, we propose a novel weak-labeling strategy for data augmentation in text regression tasks called WADER. WADER uses data augmentation to address the problems of data imbalance and data scarcity and provides a method for data augmentation in cross-lingual, zero-shot tasks. We benchmark the performance of State-of-the-Art pre-trained multilingual language models using WADER and analyze the use of sampling techniques to mitigate bias in data and optimally select augmentation candidates. Our results show that WADER outperforms the baseline model and provides a direction for mitigating data imbalance and scarcity in text regression tasks.
Abstract:Disfluency, though originating from human spoken utterances, is primarily studied as a uni-modal text-based Natural Language Processing (NLP) task. Based on early-fusion and self-attention-based multimodal interaction between text and acoustic modalities, in this paper, we propose a novel multimodal architecture for disfluency detection from individual utterances. Our architecture leverages a multimodal dynamic fusion network that adds minimal parameters over an existing text encoder commonly used in prior art to leverage the prosodic and acoustic cues hidden in speech. Through experiments, we show that our proposed model achieves state-of-the-art results on the widely used English Switchboard for disfluency detection and outperforms prior unimodal and multimodal systems in literature by a significant margin. In addition, we make a thorough qualitative analysis and show that, unlike text-only systems, which suffer from spurious correlations in the data, our system overcomes this problem through additional cues from speech signals. We make all our codes publicly available on GitHub.