Abstract:Visual cues, like lip motion, have been shown to improve the performance of Automatic Speech Recognition (ASR) systems in noisy environments. We propose LipGER (Lip Motion aided Generative Error Correction), a novel framework for leveraging visual cues for noise-robust ASR. Instead of learning the cross-modal correlation between the audio and visual modalities, we make an LLM learn the task of visually-conditioned (generative) ASR error correction. Specifically, we instruct an LLM to predict the transcription from the N-best hypotheses generated using ASR beam-search. This is further conditioned on lip motions. This approach addresses key challenges in traditional AVSR learning, such as the lack of large-scale paired datasets and difficulties in adapting to new domains. We experiment on 4 datasets in various settings and show that LipGER improves the Word Error Rate in the range of 1.1%-49.2%. We also release LipHyp, a large-scale dataset with hypothesis-transcription pairs that is additionally equipped with lip motion cues to promote further research in this space
Abstract:Accurate estimation of Room Impulse Response (RIR), which captures an environment's acoustic properties, is important for speech processing and AR/VR applications. We propose AV-RIR, a novel multi-modal multi-task learning approach to accurately estimate the RIR from a given reverberant speech signal and the visual cues of its corresponding environment. AV-RIR builds on a novel neural codec-based architecture that effectively captures environment geometry and materials properties and solves speech dereverberation as an auxiliary task by using multi-task learning. We also propose Geo-Mat features that augment material information into visual cues and CRIP that improves late reverberation components in the estimated RIR via image-to-RIR retrieval by 86%. Empirical results show that AV-RIR quantitatively outperforms previous audio-only and visual-only approaches by achieving 36% - 63% improvement across various acoustic metrics in RIR estimation. Additionally, it also achieves higher preference scores in human evaluation. As an auxiliary benefit, dereverbed speech from AV-RIR shows competitive performance with the state-of-the-art in various spoken language processing tasks and outperforms reverberation time error score in the real-world AVSpeech dataset. Qualitative examples of both synthesized reverberant speech and enhanced speech can be found at https://www.youtube.com/watch?v=tTsKhviukAE.
Abstract:The tremendous growth of social media users interacting in online conversations has also led to significant growth in hate speech. Most of the prior works focus on detecting explicit hate speech, which is overt and leverages hateful phrases, with very little work focusing on detecting hate speech that is implicit or denotes hatred through indirect or coded language. In this paper, we present CoSyn, a user- and conversational-context synergized network for detecting implicit hate speech in online conversation trees. CoSyn first models the user's personal historical and social context using a novel hyperbolic Fourier attention mechanism and hyperbolic graph convolution network. Next, we jointly model the user's personal context and the conversational context using a novel context interaction mechanism in the hyperbolic space that clearly captures the interplay between the two and makes independent assessments on the amounts of information to be retrieved from both contexts. CoSyn performs all operations in the hyperbolic space to account for the scale-free dynamics of social media. We demonstrate the effectiveness of CoSyn both qualitatively and quantitatively on an open-source hate speech dataset with Twitter conversations and show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 8.15% - 19.50%.