Abstract:State-space models (SSMs) have garnered attention for effectively processing long data sequences, reducing the need to segment time series into shorter intervals for model training and inference. Traditionally, SSMs capture only the temporal dynamics of time series data, omitting the equally critical spectral features. This study introduces EEG-SSM, a novel state-space model-based approach for dementia classification using EEG data. Our model features two primary innovations: EEG-SSM temporal and EEG-SSM spectral components. The temporal component is designed to efficiently process EEG sequences of varying lengths, while the spectral component enhances the model by integrating frequency-domain information from EEG signals. The synergy of these components allows EEG-SSM to adeptly manage the complexities of multivariate EEG data, significantly improving accuracy and stability across different temporal resolutions. Demonstrating a remarkable 91.0 percent accuracy in classifying Healthy Control (HC), Frontotemporal Dementia (FTD), and Alzheimer's Disease (AD) groups, EEG-SSM outperforms existing models on the same dataset. The development of EEG-SSM represents an improvement in the use of state-space models for screening dementia, offering more precise and cost-effective tools for clinical neuroscience.
Abstract:With the rapid adoption of Internet technologies, digital footprints have become ubiquitous and versatile to revolutionise the financial industry in digital transformation. This paper takes initiatives to investigate a new paradigm of the unified credit assessment with the use of federated artificial intelligence. We conceptualised digital human representation which consists of social, contextual, financial and technological dimensions to assess the commercial creditworthiness and social reputation of both banked and unbanked individuals. A federated artificial intelligence platform is proposed with a comprehensive set of system design for efficient and effective credit scoring. The study considerably contributes to the cumulative development of financial intelligence and social computing. It also provides a number of implications for academic bodies, practitioners, and developers of financial technologies.
Abstract:This paper reports on the ReINTEL Shared Task for Responsible Information Identification on social network sites, which is hosted at the seventh annual workshop on Vietnamese Language and Speech Processing (VLSP 2020). Given a piece of news with respective textual, visual content and metadata, participants are required to classify whether the news is `reliable' or `unreliable'. In order to generate a fair benchmark, we introduce a novel human-annotated dataset of over 10,000 news collected from a social network in Vietnam. All models will be evaluated in terms of AUC-ROC score, a typical evaluation metric for classification. The competition was run on the Codalab platform. Within two months, the challenge has attracted over 60 participants and recorded nearly 1,000 submission entries.
Abstract:In this paper, we propose a novel supervised learning method that is called Deep Embedding Kernel (DEK). DEK combines the advantages of deep learning and kernel methods in a unified framework. More specifically, DEK is a learnable kernel represented by a newly designed deep architecture. Compared with pre-defined kernels, this kernel can be explicitly trained to map data to an optimized high-level feature space where data may have favorable features toward the application. Compared with typical deep learning using SoftMax or logistic regression as the top layer, DEK is expected to be more generalizable to new data. Experimental results show that DEK has superior performance than typical machine learning methods in identity detection, classification, regression, dimension reduction, and transfer learning.