Abstract:Bundle recommendation aims to enhance business profitability and user convenience by suggesting a set of interconnected items. In real-world scenarios, leveraging the impact of asymmetric item affiliations is crucial for effective bundle modeling and understanding user preferences. To address this, we present BunCa, a novel bundle recommendation approach employing item-level causation-enhanced multi-view learning. BunCa provides comprehensive representations of users and bundles through two views: the Coherent View, leveraging the Multi-Prospect Causation Network for causation-sensitive relations among items, and the Cohesive View, employing LightGCN for information propagation among users and bundles. Modeling user preferences and bundle construction combined from both views ensures rigorous cohesion in direct user-bundle interactions through the Cohesive View and captures explicit intents through the Coherent View. Simultaneously, the integration of concrete and discrete contrastive learning optimizes the consistency and self-discrimination of multi-view representations. Extensive experiments with BunCa on three benchmark datasets demonstrate the effectiveness of this novel research and validate our hypothesis.
Abstract:Emotion recognition in conversation (ERC) is a crucial task in natural language processing and affective computing. This paper proposes MultiDAG+CL, a novel approach for Multimodal Emotion Recognition in Conversation (ERC) that employs Directed Acyclic Graph (DAG) to integrate textual, acoustic, and visual features within a unified framework. The model is enhanced by Curriculum Learning (CL) to address challenges related to emotional shifts and data imbalance. Curriculum learning facilitates the learning process by gradually presenting training samples in a meaningful order, thereby improving the model's performance in handling emotional variations and data imbalance. Experimental results on the IEMOCAP and MELD datasets demonstrate that the MultiDAG+CL models outperform baseline models. We release the code for MultiDAG+CL and experiments: https://github.com/vanntc711/MultiDAG-CL
Abstract:In this paper, we tackle the problem of computing a sequence of rankings with the guarantee of the Pareto-optimal balance between (1) maximizing the utility of the consumers and (2) minimizing unfairness between producers of the items. Such a multi-objective optimization problem is typically solved using a combination of a scalarization method and linear programming on bi-stochastic matrices, representing the distribution of possible rankings of items. However, the above-mentioned approach relies on Birkhoff-von Neumann (BvN) decomposition, of which the computational complexity is $\mathcal{O}(n^5)$ with $n$ being the number of items, making it impractical for large-scale systems. To address this drawback, we introduce a novel approach to the above problem by using the Expohedron - a permutahedron whose points represent all achievable exposures of items. On the Expohedron, we profile the Pareto curve which captures the trade-off between group fairness and user utility by identifying a finite number of Pareto optimal solutions. We further propose an efficient method by relaxing our optimization problem on the Expohedron's circumscribed $n$-sphere, which significantly improve the running time. Moreover, the approximate Pareto curve is asymptotically close to the real Pareto optimal curve as the number of substantial solutions increases. Our methods are applicable with different ranking merits that are non-decreasing functions of item relevance. The effectiveness of our methods are validated through experiments on both synthetic and real-world datasets.
Abstract:Emotion recognition is a crucial task for human conversation understanding. It becomes more challenging with the notion of multimodal data, e.g., language, voice, and facial expressions. As a typical solution, the global- and the local context information are exploited to predict the emotional label for every single sentence, i.e., utterance, in the dialogue. Specifically, the global representation could be captured via modeling of cross-modal interactions at the conversation level. The local one is often inferred using the temporal information of speakers or emotional shifts, which neglects vital factors at the utterance level. Additionally, most existing approaches take fused features of multiple modalities in an unified input without leveraging modality-specific representations. Motivating from these problems, we propose the Relational Temporal Graph Neural Network with Auxiliary Cross-Modality Interaction (CORECT), an novel neural network framework that effectively captures conversation-level cross-modality interactions and utterance-level temporal dependencies with the modality-specific manner for conversation understanding. Extensive experiments demonstrate the effectiveness of CORECT via its state-of-the-art results on the IEMOCAP and CMU-MOSEI datasets for the multimodal ERC task.
Abstract:Multimodal representation learning poses significant challenges in capturing informative and distinct features from multiple modalities. Existing methods often struggle to exploit the unique characteristics of each modality due to unified multimodal annotations. In this study, we propose Self-MI in the self-supervised learning fashion, which also leverage Contrastive Predictive Coding (CPC) as an auxiliary technique to maximize the Mutual Information (MI) between unimodal input pairs and the multimodal fusion result with unimodal inputs. Moreover, we design a label generation module, $ULG_{MI}$ for short, that enables us to create meaningful and informative labels for each modality in a self-supervised manner. By maximizing the Mutual Information, we encourage better alignment between the multimodal fusion and the individual modalities, facilitating improved multimodal fusion. Extensive experiments on three benchmark datasets including CMU-MOSI, CMU-MOSEI, and SIMS, demonstrate the effectiveness of Self-MI in enhancing the multimodal fusion task.
Abstract:This paper reports on the ReINTEL Shared Task for Responsible Information Identification on social network sites, which is hosted at the seventh annual workshop on Vietnamese Language and Speech Processing (VLSP 2020). Given a piece of news with respective textual, visual content and metadata, participants are required to classify whether the news is `reliable' or `unreliable'. In order to generate a fair benchmark, we introduce a novel human-annotated dataset of over 10,000 news collected from a social network in Vietnam. All models will be evaluated in terms of AUC-ROC score, a typical evaluation metric for classification. The competition was run on the Codalab platform. Within two months, the challenge has attracted over 60 participants and recorded nearly 1,000 submission entries.
Abstract:With the rising number of machine learning competitions, the world has witnessed an exciting race for the best algorithms. However, the involved data selection process may fundamentally suffer from evidence ambiguity and concept drift issues, thereby possibly leading to deleterious effects on the performance of various models. This paper proposes a new Reinforced Data Sampling (RDS) method to learn how to sample data adequately on the search for useful models and insights. We formulate the optimisation problem of model diversification $\delta{-div}$ in data sampling to maximise learning potentials and optimum allocation by injecting model diversity. This work advocates the employment of diverse base learners as value functions such as neural networks, decision trees, or logistic regressions to reinforce the selection process of data subsets with multi-modal belief. We introduce different ensemble reward mechanisms, including soft voting and stochastic choice to approximate optimal sampling policy. The evaluation conducted on four datasets evidently highlights the benefits of using RDS method over traditional sampling approaches. Our experimental results suggest that the trainable sampling for model diversification is useful for competition organisers, researchers, or even starters to pursue full potentials of various machine learning tasks such as classification and regression. The source code is available at https://github.com/probeu/RDS.