Picture for Leonardo Rundo

Leonardo Rundo

A Self-Supervised Image Registration Approach for Measuring Local Response Patterns in Metastatic Ovarian Cancer

Add code
Jul 24, 2024
Viaarxiv icon

Calibrating Ensembles for Scalable Uncertainty Quantification in Deep Learning-based Medical Segmentation

Add code
Sep 20, 2022
Figure 1 for Calibrating Ensembles for Scalable Uncertainty Quantification in Deep Learning-based Medical Segmentation
Figure 2 for Calibrating Ensembles for Scalable Uncertainty Quantification in Deep Learning-based Medical Segmentation
Figure 3 for Calibrating Ensembles for Scalable Uncertainty Quantification in Deep Learning-based Medical Segmentation
Figure 4 for Calibrating Ensembles for Scalable Uncertainty Quantification in Deep Learning-based Medical Segmentation
Viaarxiv icon

Focal Attention Networks: optimising attention for biomedical image segmentation

Add code
Oct 31, 2021
Figure 1 for Focal Attention Networks: optimising attention for biomedical image segmentation
Figure 2 for Focal Attention Networks: optimising attention for biomedical image segmentation
Figure 3 for Focal Attention Networks: optimising attention for biomedical image segmentation
Figure 4 for Focal Attention Networks: optimising attention for biomedical image segmentation
Viaarxiv icon

Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation

Add code
Oct 31, 2021
Figure 1 for Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation
Figure 2 for Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation
Figure 3 for Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation
Figure 4 for Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation
Viaarxiv icon

Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation

Add code
Oct 31, 2021
Figure 1 for Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation
Figure 2 for Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation
Figure 3 for Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation
Figure 4 for Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation
Viaarxiv icon

Computer-Assisted Analysis of Biomedical Images

Add code
Jun 04, 2021
Viaarxiv icon

Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy

Add code
May 16, 2021
Figure 1 for Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy
Figure 2 for Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy
Figure 3 for Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy
Figure 4 for Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy
Viaarxiv icon

A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation

Add code
Feb 08, 2021
Figure 1 for A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation
Figure 2 for A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation
Figure 3 for A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation
Figure 4 for A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation
Viaarxiv icon

MADGAN: unsupervised Medical Anomaly Detection GAN using multiple adjacent brain MRI slice reconstruction

Add code
Jul 24, 2020
Figure 1 for MADGAN: unsupervised Medical Anomaly Detection GAN using multiple adjacent brain MRI slice reconstruction
Figure 2 for MADGAN: unsupervised Medical Anomaly Detection GAN using multiple adjacent brain MRI slice reconstruction
Figure 3 for MADGAN: unsupervised Medical Anomaly Detection GAN using multiple adjacent brain MRI slice reconstruction
Figure 4 for MADGAN: unsupervised Medical Anomaly Detection GAN using multiple adjacent brain MRI slice reconstruction
Viaarxiv icon

3D deformable registration of longitudinal abdominopelvic CT images using unsupervised deep learning

Add code
May 15, 2020
Figure 1 for 3D deformable registration of longitudinal abdominopelvic CT images using unsupervised deep learning
Figure 2 for 3D deformable registration of longitudinal abdominopelvic CT images using unsupervised deep learning
Figure 3 for 3D deformable registration of longitudinal abdominopelvic CT images using unsupervised deep learning
Figure 4 for 3D deformable registration of longitudinal abdominopelvic CT images using unsupervised deep learning
Viaarxiv icon