Picture for Michael Yeung

Michael Yeung

on behalf of the AIX-COVNET collaboration

VariFace: Fair and Diverse Synthetic Dataset Generation for Face Recognition

Add code
Dec 09, 2024
Viaarxiv icon

Stain Consistency Learning: Handling Stain Variation for Automatic Digital Pathology Segmentation

Add code
Nov 11, 2023
Viaarxiv icon

Focal Attention Networks: optimising attention for biomedical image segmentation

Add code
Oct 31, 2021
Figure 1 for Focal Attention Networks: optimising attention for biomedical image segmentation
Figure 2 for Focal Attention Networks: optimising attention for biomedical image segmentation
Figure 3 for Focal Attention Networks: optimising attention for biomedical image segmentation
Figure 4 for Focal Attention Networks: optimising attention for biomedical image segmentation
Viaarxiv icon

Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation

Add code
Oct 31, 2021
Figure 1 for Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation
Figure 2 for Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation
Figure 3 for Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation
Figure 4 for Incorporating Boundary Uncertainty into loss functions for biomedical image segmentation
Viaarxiv icon

Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation

Add code
Oct 31, 2021
Figure 1 for Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation
Figure 2 for Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation
Figure 3 for Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation
Figure 4 for Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation
Viaarxiv icon

Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy

Add code
May 16, 2021
Figure 1 for Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy
Figure 2 for Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy
Figure 3 for Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy
Figure 4 for Advances in Artificial Intelligence to Reduce Polyp Miss Rates during Colonoscopy
Viaarxiv icon

A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation

Add code
Feb 08, 2021
Figure 1 for A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation
Figure 2 for A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation
Figure 3 for A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation
Figure 4 for A Mixed Focal Loss Function for Handling Class Imbalanced Medical Image Segmentation
Viaarxiv icon

Machine learning for COVID-19 detection and prognostication using chest radiographs and CT scans: a systematic methodological review

Add code
Sep 01, 2020
Figure 1 for Machine learning for COVID-19 detection and prognostication using chest radiographs and CT scans: a systematic methodological review
Figure 2 for Machine learning for COVID-19 detection and prognostication using chest radiographs and CT scans: a systematic methodological review
Figure 3 for Machine learning for COVID-19 detection and prognostication using chest radiographs and CT scans: a systematic methodological review
Figure 4 for Machine learning for COVID-19 detection and prognostication using chest radiographs and CT scans: a systematic methodological review
Viaarxiv icon