Abstract:Motivation: Post-processing of in-vivo diffusion tensor CMR (DT-CMR) is challenging due to the low SNR and variation in contrast between frames which makes image registration difficult, and the need to manually reject frames corrupted by motion. Goals: To develop a semi-automatic post-processing pipeline for robust DT-CMR registration and automatic frame selection. Approach: We used low intrinsic rank averaged frames as the reference to register other low-ranked frames. A myocardium-guided frame selection rejected the frames with signal loss, through-plane motion and poor registration. Results: The proposed method outperformed our previous noise-robust rigid registration on helix angle data quality and reduced negative eigenvalues in healthy volunteers.
Abstract:Diffusion tensor based cardiovascular magnetic resonance (DT-CMR) offers a non-invasive method to visualize the myocardial microstructure. With the assumption that the heart is stationary, frames are acquired with multiple repetitions for different diffusion encoding directions. However, motion from poor breath-holding and imprecise cardiac triggering complicates DT-CMR analysis, further challenged by its inherently low SNR, varied contrasts, and diffusion-induced textures. Our solution is a novel framework employing groupwise registration with an implicit template to isolate respiratory and cardiac motions, while a tensor-embedded branch preserves diffusion contrast textures. We've devised a loss refinement tailored for non-linear least squares fitting and low SNR conditions. Additionally, we introduce new physics-based and clinical metrics for performance evaluation. Access code and supplementary materials at: https://github.com/Mobbyjj/DTCMRRegistration
Abstract:Stain variation is a unique challenge associated with automated analysis of digital pathology. Numerous methods have been developed to improve the robustness of machine learning methods to stain variation, but comparative studies have demonstrated limited benefits to performance. Moreover, methods to handle stain variation were largely developed for H&E stained data, with evaluation generally limited to classification tasks. Here we propose Stain Consistency Learning, a novel framework combining stain-specific augmentation with a stain consistency loss function to learn stain colour invariant features. We perform the first, extensive comparison of methods to handle stain variation for segmentation tasks, comparing ten methods on Masson's trichrome and H&E stained cell and nuclei datasets, respectively. We observed that stain normalisation methods resulted in equivalent or worse performance, while stain augmentation or stain adversarial methods demonstrated improved performance, with the best performance consistently achieved by our proposed approach. The code is available at: https://github.com/mlyg/stain_consistency_learning
Abstract:Diffusion tensor based cardiac magnetic resonance (DT-CMR) is a method capable of providing non-invasive measurements of myocardial microstructure. Image registration is essential to correct image shifts due to intra and inter breath-hold motion. Registration is challenging in DT-CMR due to the low signal-to-noise and various contrasts induced by the diffusion encoding in the myocardial and surrounding organs. Traditional deformable registration destroys the texture information while rigid registration inefficiently discards frames with local deformation. In this study, we explored the possibility of deep learning-based deformable registration on DT- CMR. Based on the noise suppression using low-rank features and diffusion encoding suppression using variational auto encoder-decoder, a B-spline based registration network extracted the displacement fields and maintained the texture features of DT-CMR. In this way, our method improved the efficiency of frame utilization, manual cropping, and computational speed.
Abstract:In vivo cardiac diffusion tensor imaging (cDTI) is a promising Magnetic Resonance Imaging (MRI) technique for evaluating the micro-structure of myocardial tissue in the living heart, providing insights into cardiac function and enabling the development of innovative therapeutic strategies. However, the integration of cDTI into routine clinical practice is challenging due to the technical obstacles involved in the acquisition, such as low signal-to-noise ratio and long scanning times. In this paper, we investigate and implement three different types of deep learning-based MRI reconstruction models for cDTI reconstruction. We evaluate the performance of these models based on reconstruction quality assessment and diffusion tensor parameter assessment. Our results indicate that the models we discussed in this study can be applied for clinical use at an acceleration factor (AF) of $\times 2$ and $\times 4$, with the D5C5 model showing superior fidelity for reconstruction and the SwinMR model providing higher perceptual scores. There is no statistical difference with the reference for all diffusion tensor parameters at AF $\times 2$ or most DT parameters at AF $\times 4$, and the quality of most diffusion tensor parameter maps are visually acceptable. SwinMR is recommended as the optimal approach for reconstruction at AF $\times 2$ and AF $\times 4$. However, we believed the models discussed in this studies are not prepared for clinical use at a higher AF. At AF $\times 8$, the performance of all models discussed remains limited, with only half of the diffusion tensor parameters being recovered to a level with no statistical difference from the reference. Some diffusion tensor parameter maps even provide wrong and misleading information.