Abstract:As the recommendation service needs to address increasingly diverse distributions, such as multi-population, multi-scenario, multitarget, and multi-interest, more and more recent works have focused on multi-distribution modeling and achieved great progress. However, most of them only consider modeling in a single multi-distribution manner, ignoring that mixed multi-distributions often coexist and form hierarchical relationships. To address these challenges, we propose a flexible modeling paradigm, named Hierarchical Multi-Distribution Network (HMDN), which efficiently models these hierarchical relationships and can seamlessly integrate with existing multi-distribution methods, such as Mixture of-Experts (MoE) and Dynamic-Weight (DW) models. Specifically, we first design a hierarchical multi-distribution representation refinement module, employing a multi-level residual quantization to obtain fine-grained hierarchical representation. Then, the refined hierarchical representation is integrated into the existing single multi-distribution models, seamlessly expanding them into mixed multi-distribution models. Experimental results on both public and industrial datasets validate the effectiveness and flexibility of HMDN.
Abstract:\textit{Knowledge-aware} recommendation methods (KGR) based on \textit{graph neural networks} (GNNs) and \textit{contrastive learning} (CL) have achieved promising performance. However, they fall short in modeling fine-grained user preferences and further fail to leverage the \textit{preference-attribute connection} to make predictions, leading to sub-optimal performance. To address the issue, we propose a method named \textit{\textbf{K}nowledge-aware \textbf{D}ual-side \textbf{A}ttribute-enhanced \textbf{R}ecommendation} (KDAR). Specifically, we build \textit{user preference representations} and \textit{attribute fusion representations} upon the attribute information in knowledge graphs, which are utilized to enhance \textit{collaborative filtering} (CF) based user and item representations, respectively. To discriminate the contribution of each attribute in these two types of attribute-based representations, a \textit{multi-level collaborative alignment contrasting} mechanism is proposed to align the importance of attributes with CF signals. Experimental results on four benchmark datasets demonstrate the superiority of KDAR over several state-of-the-art baselines. Further analyses verify the effectiveness of our method. The code of KDAR is released at: \href{https://github.com/TJTP/KDAR}{https://github.com/TJTP/KDAR}.